GOVERNMENT ARTS COLLEGE (Autonomous), (Re-accredited with 'A' Grade by NAAC and Affiliated to Bharathidasan University, Tiruchirappalli)

KARUR - 639 005.

UG COURSE STRUCTURE

Course Structure under CBCS System

(Applicable to the Candidates admitted from the Academic Year 2021 – 2022 onwards)

B.Sc., **PHYSICS**

GOVERNMENT ARTS COLLEGE (Autonomous),

KARUR - 639 005

Course structure under CBCS system

UNDERGRADUATE COURSES

ABOUT THE DEPARTMENT OF PHYSICS

Department of Physics (BSc physics) was established in the year 1969 and MSc physics was started in the year 2005. After Autonomy, some modern inter-disciplinary subjects like Nano science, Biophysics, Medical physics, Advanced Computer applications in Physics have been included in the present syllabus at both UG and PG level. CBCS system is being followed successfully curriculum has been designed with keen interest so as to ensure that our students get maximum benefits while they study the higher education. Apart from the traditional method of teachning through chalk and talk methods, group discussions, seminar are being conducted at frequent intervals, power point presentation and video clipping are also being used effectively.

Department has B.Sc, M.Sc, M.Phil and Ph.D Physics (Regular) courses. Department has got a good library with 4000 books and 7 journals. The laboratory in this department is a well equipped one with modern amenities like, UV Spectrometer, Constant temperature bath, Spray Pyrolysis apparatus with computerized equipment, Mercury spectrum with computerized, Research softwares are available like Gaussian-2009, Gauss view 05 and wingx (crystallography Softwares).

GOVERNMENT ATRT COLLEGE (AUTONOMOUS)

VISION

It is our vision to persuade every mind in this temple of learning to tirelessly seek the truth to face the challenges of the times and honestly participate in the establishment of universal peace, progress and love.

MISSION

It is our mission to create in everyone an honest searching mind to be ready for value-based creative citizenship for regional, national and global peace and progress.

PG AND RESEARCH DEPARTMENT OF PHYSICS

VISION

MISSION

What is Credit system?

Weightage to a course is given in relation to the hours assigned for the course. The following Table shows the correlation between credits and hours. However, there could be some flexibility because of practical, field visits, tutorials and nature of project work.

For UG courses, a student must earn a minimum of **140** (+4) credits as mentioned in the table below. The total number of minimum courses offered by a department is given in the course pattern.

UNDER GRADUATE COURSEPATTERN (2021 ONWARDS)

PART	SEMESTER	SPECIFICATION	NO. OF COURSES	HOURS	CREDITS	TOTAL
I	I - IV	Part I	4	22	12	24
II	I - IV	Part II	4	22	12	
	I - VI	Core courses Theory	9	49	42	
III	I - VI	Core courses Practical	4	23	17	92
	I - IV	Allied Course	4	22	16	
	I - IV	Allied Course Practical	1	4	4	-
	V - VI	Elective Course	3	15	13	-
	I - VI	Value Education Environmental Studies Soft Skills Development	3	6	6	22
IV		Value Added Course (CLP)	2	4	2	+
	I - III	Extra Credit Course (MOOC)	1	-	2	(4)
	III - IV	Non Core Elective	2	4	4	-
	IV - V	Skill Based Elective - Practical	3	6	12	
V	VI	Gender Education	1	1	1	2
		Extension Activities	1	-	1	
		TOTAL		180	140 (+4)	140 (+4)

Course Pattern

The Undergraduate degree course consists of five vital components. They are as follows:

Part - I: Language (Tamil)

Part - II: General English

Part - III: Core Course (Theory) Allied, Core Electives)

Part - IV: Value Education, Value Added Course, Extra Credit Course, Environmental Studies, Non Core Elective and Soft Skills Development.

Part - V: Gender Education and Extension Activities (NSS, NCC, Sports and Games, PEC, FAPA, YRC, RRC, RC, LC and CC).

Core Courses

A core course is the course offered by the parent department related to the major subjects, components like theories, practical's, Project work, field visits and etc.

Noncore elective

Noncore elective Core should be shared by the various Departments of college. This course should be opted by all the students belonging to the particular Department. Each department of the respective college should allocate themselves the schedule and the units of the course.

Core Elective

The core elective course is also offered by the parent department. The objective is to provide choice and flexibility within the department. There are THREE core electives. They are offered in different semesters according to the choice of the college.

Extra Credit Courses

In order to facilitate the students gaining extra credits, the extra credit courses are given. There are two extra credit courses - Massive Open Online Courses (MOOC) and Skill-based Course - offered in the III and V Semesters respectively. According to the guidelines of UGC, the students are encouraged to avail this option of enriching by enrolling themselves in the MOOC provided by various portals such as SWAYAM, NPTEL, etc. Skill based course is offered by the department apart from their regular class hours.

Value Education Courses

There are four courses offered in the first semesters for the First year students.

Non-Major Elective / Skill Based Elective

These courses are offered in two perspectives as electives "Within college".

Subject Code Fixation

The following code system (11 characters) is adopted for Under Graduate courses:

Year of	UG Code of	Semester	Specification	Running number
Revision	the Dept		of Part	in the part
<u> </u>	\	\downarrow	\	\
21	U21	x	x	xx
21	UPH	1	X	1

For example:

IB.Sc., - Properties of Matter and Acoustics,

The code of the paper is U21 PH 1C1.

Thus, the subject code is fixed for other subjects.

EXAMINATION

Continuous Internal Assessment (CIA):

UG - Distribution of CIA Marks						
Passing Minimum: 40 Marks						
THEORY CIA MAXMIMUM = 25	THEORY CIA MINIMUM = 10					
PRACTICAL CIA MAXIMUM = 40	PRACTICAL CIA MINIMUM = 16					

End - Semester Tests

Centralized - Conducted by the office of Controller of Examinations.

Semester Examination

Testing with Objective and Descriptive questions.

Section - A: 10 Questions x 2 Marks = 20 Marks (No Choice - Two questions from each unit)

Section - B: 5 Questions x 5 Marks = 25 Marks (Either... or Type - One pair from each unit)

Section - C: 3 Questions x 10 Marks = 30 Marks (3 Out of 5 - One question from each unit)

Duration of Examination:

3- Hours examination for courses.

Grading System

1. Grading

Once the marks of the CIA and the end-semester examination for each of the courses are available, they will be added. The marks thus obtained, will then be graded as per the scheme provided in Table 1.

From the second semester onwards the total performance within a semester and the continuous performance starting from the first semester are indicated by **Semester Grade Point Average (GPA)** and **Cumulative Grade Point Average (CGPA)**, respectively. These two are calculated by the following formulae

$$\begin{array}{c} n & n \\ \sum C_i \, G_i & \sum C_i \, M_i \\ \\ GPA = \underbrace{i=1} \quad WAM \ (Weighted \ Average \ Marks) = \underbrace{i=1} \\ n & n \\ \sum C_i & \sum C_i \\ i=1 & i=1 \end{array}$$

Where, 'Ci' is the Credit earned for the Course - i,

'G_i' is the Grade Point obtained by the student for the Course 'i'.

'M' is the marks obtained for the course 'i', and

'n' is the number of Courses Passed in that semester.

CGPA: Average GPA of all the Courses starting from the first semester to the current semester.

2. Classification of Final Results

- i) For each of the three parts, there shall be separate classification on the basis of the CGPA, as indicated in the following Table 2.
- ii) For the purpose of Classification of Final Results, the Candidates who earn CGPA 9.00 and above shall be declared to have qualified for the Degree as 'Outstanding'. Similarly, the candidates who earn the CGPA between 8.00 8.99, 7.00 7.99, 6.00 6.99 and 5.00 5.99 shall be declared to have qualified for their Degree in the respective programmes as 'Excellent', 'Very Good', 'Good' and 'Above Average' respectively.
- iii) Absence from an examination shall not be taken as an attempt.

Table - I - Grading of the Courses

Marks Range	Grade Point	Corresponding Grade
90 and above	10	0
80 and above but below 90	9	A+
70 and above but below 80	8	A
60 and above but below 70	7	B+
50 and above but below 60	6	В
40 and above but below 50	5	С
Below 40	0	RA

Table - 2 - Final Result

CGPA	Classification of Final Results	Corresponding Grade
9.00 and above	О	Outstanding
8.00 to 8.99	A+	Excellent
7.00 to 7.99	A	Very Good
6.00 to 6.99	B+	Good
5.00 to 5.99	В	Above Average
4.00 to 4.99	С	Average
Below 4.00	RA	Re - Appearance

Credit based weighted Mark System is adopted for individual semesters and cumulative semesters in the column 'Marks Secured' (for 100).

Declaration of Result:						
Mr./Ms	has successfully completed the Under Graduate i					
programme.	The candidate's Cumulative Grade Point Average					
(CGPA) in Part - III is	and the class secured is by					
completing the minimum o	f 140 credits. The candidate has acquired					
(if any) extra credits offered	d by the parent department courses.					

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

On obtaining an undergraduate degree the students will be able to:

- **PEO1**: Apply the fundamental knowledge of physics for the advancement in technology and research
- **PEO2**: Candidates also gain expertise in lab work through practical sessions and training programmes which help them excel at the workplace.
- **PEO3:**They can implement their imagination in understanding the scientific phenomena and discover methodologies for the benefit of mankind
- **PEO4**: Can become a Physicist .Also eligible to work as a research assistant or technician in a similar field
- **PEO5**: Candidates can take admission in Integrated M.Sc. course through JEST, Dual Degree (M.Sc.-Ph.D.)

PROGRAMME OUTCOMES (POs)

At the end of the program the students will be able to

- **PO1:** Undergraduate students are to be motivated to enhance their knowledge, understanding and applying new ideas in order to get employability/ self-employment.
- **PO2:** Students can pursue higher studies from top educational and research institutes like IIT JAM, JEST, TIFR GS, in India.
- **PO3:** Inculcate skills to evaluate, innovate and integrate the contemporary issues and motivate further learning.
- **PO4:** Enhance their ethical values, communicative and employability skills.
- **PO5:** Gain quality education, global in perspective and contribute towards holistic development.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

After completion of the Specific programme, the student will.

- **PSO1**: get an idea to enhance conceptual knowledge.
- **PSO2:** get awareness on impact of physics.
- **PSO3:** learn observational, measuring and computational techniques.
- **PSO4:** Impart experimental skills
- **PSO5:** analyzing problem, logical thinking, reasoning, troubleshooting and solving skill
- **PSO6**: Ethics, Social Responsibility, Leadership and Entrepreneurial Skills Research Orientation and Internship and Employability Enhancement.
- **PSO7:** be able to succeed the entrance exam conducted for admission in M.Sc Degree course, Integrated courses (M.Sc.-Ph.D), Dual Degree (M.Sc.-Ph.D.) or Post-Bachelor's Degree programme at IITs or Integrated Ph.Dprogrammes at IISc.

GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR – 639 005

 $(Reaccredited\ with\ `A'\ Grade\ by\ NAAC\ and\ Affiliated\ to\ Bharathidas an\ University,\ Tiruchirap palli)$

B.Sc. PHYSICS PROGRAMME STRUCTURE UNDER CBCS SYSTEM

(For the candidates admitted from the year 2021-2022 onwards)

SEMESTER	PART	COURSE	COURSE TITLE	COURSE	ïK	CREDIT	EXAM HOURS	MAI	RKS	TOTAL
SE				185	HOOH I	[)	EXAI	INT	ESE	
	Ι	Tamil - I	Tamil– I	5	3	3	25	75	100	
	II	English -I	-I English-I U21L1E1		5	3	3	25	75	100
	III	Core Course - I	Properties of Matter and Acoustics	U21PH1C1	6	5	3	25	75	100
		Core Course - II	Core Practical – I	-	3	-	-	-	-	-
		First Allied Course –I	Allied Mathematics - I	U21MM1A4	5	3	3	25	75	100
I		First Allied Course - II	Allied Mathematics - II	-	2	-	-	-	-	-
	IV	Value Education	Value Education	U21VE1	2	2	3	25	75	100
	IV	Value added Course	CLP/SAP (Special Assistance Programme) SAP Applicable for B.Sc.(CS) & B.Com(CA)		2					
			<u> </u>		30	16				500
	I	Tamil -II	Tamil–II	U21L2T2	5	3	3	25	75	100
	II	English– II	English–II	U21L2E2	5	3	3	25	75	100
		Core Course- II	Core Practical–1	U21PH2C2P	3	4	3	40	60	100
	III	Core Course–III	Mechanics	U21PH2C3	6	5	3	25	75	100
		First Allied Course–II	Allied Mathematics-II	U21MM2A5	2	4	3	25	75	100
II		First Allied Course–III	Allied Mathematics-III	U21MM2A6	5	3	3	25	75	100
	IV	Environmental Studies	Environmental Studies	U21ES2	2	2	3	25	75	100
	IV		CLP/SAP (Special Assistance							
		Value added Course	Programme) SAP Applicable for		2	(2)				
			B.Sc.(CS) & B.Com(CA)							
					30	24				700
	I	Tamil -III	Tamil - III	U21L3T3	6	3	3	25	75	100
	II	English – III	English - III	U21L3E3	6	3	3	25	75	100
	III	Core Course–IV	Thermodynamics and Statistical Physics	U21PH3C4	6	5	3	25	75	100
		Core Course–V	Core Practical- II	-	3	-	-	-	-	-
III		Second Allied Course - I	Allied Chemistry– I	U21CH3A1	5	3	3	25	75	100
		Second Allied Course - II	Allied Chemistry–II	-	2	-	-	-	-	-
	IV	Non-Core Elective -I	Laboratory Hygiene and Safety	U21CH3N1	2	2	3	25	75	100
			<u>I</u>		30	16				500
1										

II English IV English IV U21L4E4 6 3 3 25 75	100 100 100 100
III Core Course - VI Optics U21PH4C6 5 5 3 25 75 Second Allied Course - II Allied Chemistry – II Practical U21CH4A2P 2 4 3 40 60 Second Allied Course - III Allied Chemistry - III U21CH4A3 5 3 3 25 75 IV Skill Based Elective - I Desktop Publishing and Photoshop U21PH4S1P 2 4 3 40 60	100
Second Allied Course -II Allied Chemistry –II Practical U21CH4A2P 2 4 3 40 60 Second Allied Course - III Allied Chemistry - III U21CH4A3 5 3 3 25 75 IV Skill Based Elective - I Desktop Publishing and Photoshop U21PH4S1P 2 4 3 40 60	
Second Allied Course - III Allied Chemistry - III U21CH4A3 5 3 3 25 75 IV Skill Based Elective - I Desktop Publishing and Photoshop U21PH4S1P 2 4 3 40 60	100
IV IV Skill Based Elective - I Desktop Publishing and Photoshop U21PH4S1P 2 4 3 40 60	
Skill Based Elective - I Photoshop U21PH4S1P 2 4 3 40 60	100
Photoshop U21PH4S1P	100
IV Non-Core Elective - II Water Pollution and Treatment U21CH4N2 2 2 3 25 75	100
	100
IV Extra Credit Course Massive Open Online Course	
(MOOC's)	
30 28	800
Core Course – VII Electricity and Magnetism U21PH5C7 5 5 3 25 75	100
Core Course – VIII Atomic and Nuclear physics U21PH5C8 5 4 3 25 75	100
III Core Course – IX Quantum Mechanics & U21PH5C9 4 3 3 25 75	100
V Core Course - X Core Practical – III (General) - 3	-
Core Course - XI Core Practical –IV - 3	-
(Electronics)	
Elective Course - I Basic Electronics U21PH5E1 4 4 3 25 75	100
Skill Based Elective - II Electrical Wiring and Winding Lab U21PH5S2P 2 4 3 40 60	100
Skill Based Elective - III Programming in "C" II21PH5S3P 2 4 3 40 60	100
Languages (Lab)	100
V Soft Skill Development Soft Skill Development U21SSD3 2 2 3 25 75	100 700
Core Course- X Core Practical- III (General) U21PH6C10P 3 4 3 40 60	100
Core Practical – IV	
Core Course–XI (Electronics) U21PH6C11P 3 5 3 40 60	100
III Core Course–XII Solid State Physics U21PH6C12 6 5 3 25 75	100
VI Core Course–XIII Spectroscopy and Laser Physics U21PH6C13 6 5 3 25 75	100
Elective Course-II Digital Electronics and U21PH6E2 5 5 3 25 75	100
Microprocessor	100
Elective Course-III Numerical Methods U21PH6E3 6 4 3 25 75	100
Extension Activities Gender Studies U21EA4 1 1 3 25 75	100
Extension Activities (NSS/ NCC / RRB / YRC /	
Fine Arts/ Environmental	
Education / Population,	
Education Club / Rotract club/	
Leo Club /Sports & Games)	
30 30	700
TOTAL 180 140 +	3900
(4)	

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – I SEMESTER – CORE COURSE - I

(For the candidates admitted from the year 2021-22 onwards)

PROPERTIES OF MATTER AND ACOUSTICS

COURSE OBJECTIVES:

To make the Students to

- 1. Analyze and comprehend regarding the strength of the solid materials of different size.
- 2. Differentiate between the streamline and turbulent flow of liquids and reason out the effects of liquids while flowing
- 3. Compare the viscosity and interfacial surface tension between the liquids
- 4. Understand the effect of gravitation on objects and understand the principle of rocket
- 5. Assimilate and analyze the motion in fluids and express the changes occurring in them in turns of boiling point and freezing point.

UNIT - I | ELASTICITY

Elastic moduli - Poisson's ratio - Bending of a beam - Expression for bending moment - Depression of the loaded end of a Cantilever - Uniform - Non uniform bending - Theory - Experiment pin and microscope method - Work done in uniform bending - Non-uniform bending - Theory - Expression for couple per unit twist - Determination of rigidity modulus - Static torsion method with scale and telescope - Rigidity modulus by torsion pendulum with mass I shape girders

UNIT - II VISCOSITY

Streamline and Turbulent flow - Critical velocity - Poisseulle's formula-Determination of coefficient of viscosity by capillary flow method — Comparison of viscosities, Oswald's viscometer - Viscosity of a highly viscous liquid - Stoke's method - Variations of viscosity with temperature and pressure — Viscosity of gases - Mayer's formula for the rate of flow of a gas through a capillary tube - Rankine's method for the determination of viscosity of agas.

UNIT - III SURFACE TENSION

Surface energy - Angle of contact and its determination - Excess of pressure inside curved - Cylindrical and spherical surfaces - Formation of drops - Experimental study of variation of surface tension with temperature - Drop weight method of determining surface tension and interfacial surface tension - Angle of contact of mercury - Quincke's method – Jaegar's method.

UNIT - IV OSMOSIS AND DIFFUSION

Osmosis: Vapour pressure osmosis - Experimental determination of osmotic pressure - Laws of osmotic pressure - Osmotic and vapour pressure of a solution - Determination of boiling point of solution and freezing point of solution - Diffusion: Fick's law - Experimental determination of diffusivity - Analogy between diffusion and thermal conduction - Applications.

UNIT - V ACOUSTICS

Theory of vibrations: Simple harmonic motion - Lissajous figures - Undamped vibration - Damped vibration - Forced vibration - Resonance and sharpness of resonance - Acoustics of buildings: Requisites of good acoustics - Sabine's reverberation formula - Ultrasonics: Properties - Production of ultrasonic waves: Magnetostriction method - Piezoelectric method - Applications.

TEXT BOOKS:

- 1. BrijLal and N. Subramaniyam, *Properties of Matter* Eurasia Publishing Housing, 1983
- 2. R.Murugesan, *Properties of Matter Properties of Matter and Acoustics*-.Chand &Co, Delhi.
- 3. BrijLal and Subramaniyam, Text Book of Sound Vikas Publishing House, Delhi.

REFERENCE BOOKS:

- 1. P.E. Subramanian lyer, *Properties of Matter*.
- 2. L.P. Sharma and H.C. Saxena, Oscillations, waves and sound.

CHAIRMAN – BOS

CONTROLLER OF EXAMINATIONS

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES:

By the end of this course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Know the concepts of statics, hydrostatics, hydrodynamics	K2
CO2	Understand the rigid body dynamics in terms of Moments of Inertia.	K4
CO3	Learn to solve problems in statics	K5
CO4	Apply gravitation at various situations and its applications	К3
CO5	Acquire a knowledge of variations of acceleration due to gravity and its importance	K2

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course		
Knowledge and skill	Employability oriented	
Skill oriented	Entrepreneurship oriented	

Mapping Course Outcome with PO and PSO

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PSO 1	PSO 2	PSO 3	PSO4	PSO 5	Score
CO1	1	4	4	2	2	3	4	4	3	4	3.2
CO2	1	4	3	2	2	4	3	4	3	2	2.8
CO3	2	3	4	3	2	3	4	4	3	2	3.0
CO4	3	4	3	4	2	3	3	4	4	3	3.3
CO5	2	3	3	2	3	3	3	4	3	3	2.9

Result: The core of the course is 2.9 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total of Mean Score

Mean overall score for COs = -----
Total No. of Cos

COURSE DESIGNER: DR.V.SHANMUGAM

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – II SEMESTER – CORE COURSE - II

(For the candidates admitted from the year 2021-22 onwards)

CORE PRACTICAL - I

COURSE OBJECTIVES:

To make the Students to

- 1. Understand the physical phenomena and fundamentals of general physics.
- 2. Perform experiments in the field of general physics and gaining understanding of the results.
- 3. Interpret the practical result to support the theory.

List of Experiments (Any Fifteen)

- 1. Young's Modulus Non Uniform Bending Pin and Microscope.
- 2. Young's Modulus Uniform Bending Optic lever method.
- 3. Young's Modulus Cantilever Depression Scale and Telescope Method.
- 4. Compound Pendulum g and K.
- 5. Torsional Pendulum Rigidity Modulus.
- 6. Surface tension and Interfacial surface tension of the given liquid Drop weight method.
- 7. Sonometer Verification of laws of transverse vibrations and determination of frequency of a tuning fork.
- 8. Sonometer Determination of AC frequency.
- 9. Melde's Experiment.
- 10. Specific heat capacity of liquid Newton's law of cooling.
- 11. Thermal Conductivity of bad conductor Lee's disc method.
- 12. Spectrometer refractive index of solid prism (A,D and μ).
- 13. Co-efficient of viscosity of the given liquid Poiseuille's flow method.
- 14. Air Wedge -Thickness of wire and thickness of insulation.
- 15. Meter Bridge Specific resistance.
- 16. P.O. Box Temperature Co efficient of resistance.
- 17. Potentiometer Calibration of low range voltmeter.

TEXT BOOKS:

- 1. Practical Physics, Anchal Srinivasa and R.K. Shukka, New age International Publishers, 2018, second Edition.
- 2. A text book of Physics Practical Part I, Prof. C.C. Ouseph and Prof. V. Srinivasan, S.Visvanathan Publisher ,1990
- 3. A text book of Physics Practical Part II, Prof. C.C. Ouseph and Prof. V.Srinivasan, S.Visvanathan, Publisher, 1996

- 1. Practical Physics, S.L.Gupta and V.Kumar, PragatiPrakashan- Meerut, 1999, 23rd Edition
- 2. A Text book of Practical Physics, H.S.Aller and H.Moore, Mac millan and Co. Limited, 1941.
- 3. Practical Physics with viva –voce, S.P. Singh, Pragati Prakashan- Meerut,1999, 23rd Edition Advanced level Practical Physics, M.Nelkon and J.M. Ogborn, Heinemann Educational Books Limited London, 1967

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Provide hands on experiences in conducting scientific	K5
	investigations and laboratory experiments.	
	Develop the ability to analyze basic experiments and analyze the	K5
CO2	relationship between theory and experimental results.	
	Take measurements to compare experimental results in the	K5
CO3	laboratory with the theoretical analysis.	
CO4	Will be familiar to conduct experimental investigations of	K5
	simple mechanical, heat and optical physics.	
CO5	Practice record keeping of experimental work and data graphing.	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Mapping Course Outcome with PO and PSO

COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	TOT	Score
CO1	3	2	3	2	3	3	2	2	3	3	26	2.6
CO2	2	2	3	3	2	2	2	3	3	2	24	2.4
CO3	2	3	3	2	3	3	3	3	2	2	26	2.6
CO4	2	2	3	2	2	2	3	3	2	2	23	2.3
CO5	3	2	2	3	3	3	2	2	3	3	26	2.6
	Mean overall Score								125	2.5		

Result: The core of the course is 2.5 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

COURSE DESIGNER: DR.S.LALITHA

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005

B.Sc. PHYSICS - II SEMESTER - CORE COURSE - III

(For the candidates admitted from the year 2021-22 onwards)

MECHANICS

COURSE OBJECTIVES:

- 1. To study the statics and dynamics of solid bodies and liquids.
- 2. To understand their physical properties.
- 3. To solve problems in statics and dynamics.

UNIT - I STATICS

Center of gravity - C.G. of solid hemisphere; hollow hemisphere; tetrahedron hollow cone and solid cone. Friction - laws of friction - cone of friction - angle of friction - static and dynamic friction - equilibrium of a body on a rough inclined plane with and without the application of external force - friction clutch.

UNIT - II DYNAMICS

Projectile - Horizontal projection - Oblique projection - Path of a projectile - Resultant velocity - Time of flight - Vertical height - Range - Impulse and Impact - Laws of Impact - Direct and Oblique impact - Loss of kinetic energy due to direct impact - Motion of two interacting bodies- reduced mass.

UNIT - III DYNAMICS OF RIGID BODIES

Moment of Inertia - Kinetic energy of rotating body and Angular momentum - Parallel and Perpendicular axes theorems - Moment of inertia of a rod , rectangular lamina, sphere, shell, cylinder and fly wheel - Kinetic energy of rolling body – body rolling down an inclined plane.

UNIT - IV HYDROSTATICS

Centre of pressure - centre of pressure of a rectangular lamina and triangular lamina - Floating Bodies - Laws of floatation - stability of floating bodies - Atmospheric pressure - variation of atmospheric pressure with altitude

UNIT - V HYDRODYNAMICS

Equation of continuty - Energy of the fluid - Euler Equation of undirectional flow - Bernoulli's theorem (Explanation, Proof) - Applications of Bernoulli's theorem: Torricelli's theorem - venturimeter meter - Pitot tube

TEXT BOOKS:

- 1. Murugeshan, R., Mechanics & Mathematical Physics, Chand & Sons, New Delhi, 2015.
- 2. Narayanamoorthy & Vishwanathan (2008) Dynamics, The National Publishing, Company, Chennai, 2008.

- 1. Mechanics, D.S. Mathur, S.Chand& Company Ltd, New Delhi(2000)
- 2. Fundamentals of Physics D. Halliday, R. Resnick and J. Walker, 6th edition, Wiley, NY.

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	The concepts of statics, hydrostatics, hydrodynamics	K2
CO2	Understand the rigid body dynamics in terms of Moments of Inertia.	K2
CO3	Learn to solve problems in statics	K5
CO4	Will be familiar to learn to solve problems in statics	К3
CO5	Acquire a knowledge of variations of acceleration due to gravity and its importance	K4

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course			
Knowledge and skill	✓	Employability oriented	
Skill oriented		Entrepreneurship oriented	

Mapping Course Outcome with PO and PSO

COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	TOT	Score
CO1	1	4	4	2	2	3	4	4	3	4	3.2	1
CO2	1	4	3	2	2	4	3	4	3	2	2.8	1
CO3	2	3	4	3	2	3	4	4	3	2	3.0	2
CO4	3	4	3	4	2	3	3	4	4	3	3.3	3
CO5	2	3	3	2	3	3	3	4	3	3	2.9	2
	Mean overall Score									2.65		

Result: The core of the course is 2.65 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total of Mean Score

Mean overall score for COs = -----
Total No. of Cos

COURSE DESIGNER: M.SENGANI SELVI

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS - III SEMESTER - CORE COURSE - IV

(For the candidates admitted from the year 2021-22 onwards)

THERMODYNAMICS AND STATISTICAL PHYSICS

COURSE OBJECTIVES:

- CEO1: To make the students understand the working function of internal combustions engines.
- CEO2: Acquire knowledge of changes of entropy in different process.
- CEO3: Evaluate the thermal conductivities of good and bad conductors.
- CEO4: Apply the principle of Refrigerating mechanism.
- CEO5: Use thermal and statistical principle in a wide range of applications.

UNIT - I HEAT

Specific heat of solids - Dulong and Petit's law - Specific heat capacities of gases - Determination of Cv by Joly's differential steam calorimeter - Determination of Cp by Regnault's method - Isothermal and adiabatic processes - Reversible and irreversible processes - Carnot's theorem - Proof - Internal combustion engines (Otto and diesel engines) - Cycle of operation - Indicator diagram – Efficiency.

UNIT - II THERMODYNAMICS

Entropy - Change of entropy in adiabatic process - Change of entropy in reversible and irreversible process - T-S diagram - Entropy of perfect gas - Kelvin's thermodynamic scale of temperature - Maxwell's thermo dynamical relations - Applications: Clausius - Clapeyron's equations - T- dS equations.

UNIT - III CONDUCTION AND RADIATION

Conduction: Coefficient of thermal conductivity - Thermal conductivity of a good and bad conductor: Forbe's method - Lee's disc method - Radiation: Stefan's law - Determination of Stefan's constant (laboratory method) - Disappearing filament Optical Pyrometer - Solar constant - Temperature of the Sun - Water flow pyroheliometer - Water Stir Pyroheliometer.

UNIT - IV LOW TEMPERATURE PHYSICS

Joule - Kelvin effect - Temperature of inversion - Porous plug experiment - theory Liquefication of gases (principle of regenerative cooling) - Adiabatic expansion process - Adiabatic demagnetization - Refrigerating mechanism - Liquefication of air- Linde's process - Liquefication of Helium.

UNIT - V STATISTICAL PHYSICS

Phase space - Statistical equilibrium - Micro and Macro states - Ensembles - Statistics of Particles - M.B - B.E - F.D statistics - Application of B.E statistics to photon gases - F.D statistics - Application of F.D. statistics to electron gas - Comparison of three statistics.

TEXT BOOKS:

- 1. BrijLal, Dr. N. Subrahmaniyam and P.S. Hemine, *Heat, Thermodynamics and Statistical Physics* S.Chand& Co., New Delhi.,2010
- 2. J.B. Rajam and C.L.Arora, *Heat and thermodynamics* S.Chand & Co., New Delhi.
- 3. R. Murugesan, *Thermal Physics* 1stEdition2002.

- 1. D.S. Mathur, Heat and thermodynamics S.Chand& Co., 2002.
- 2. Agarwal, Singhal, Sathyaprakash, Heat and thermodynamics.
- 3. H.C. Saxena and Agarwal Thermal physics.

Lecture method; ICT, Seminar, Quiz, Group Discussion.

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Recall the different specific heat capacities of matters	K1
	Understand Maxwell's thermodynamic relations to relate the	K2
CO2	changes in the fundamental and derived properties	
	Apply Stefan's constant to evaluate temperature of sun at a	К3
CO3	particular place	
CO4	Analyze the different principles used in liquefication of gases	K4
CO5	Compare the different statics of particles	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course			
Knowledge and skill	√	Employability oriented	
Skill oriented		Entrepreneurship oriented	

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	POS7	POS8	TOT	Score
CO1	3	2	3	3	2	3	2	3	2	1	3	2	2	31	2.3
CO2	3	2	2	3	2	3	3	1	2	3	3	2	3	32	2.5
CO3	3	2	3	3	2	3	2	3	3	3	2	3	2	34	2.6
CO4	3	3	3	3	2	3	3	2	3	3	2	2	2	34	2.5
CO5	3	3	3	2	3	2	3	2	2	3	2	3	2	33	2.5
						Mea	n overa	ll score							2.5

Result: The core for this course is 2.5 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

COURSE DESIGNER: DR.S.SHANTHI

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – IV SEMESTER – CORE COURSE - V

(For the candidates admitted from the year 2021-22 onwards)

CORE PRACTICAL - II

COURSE OBJECTIVES:

To make the Students to

- CEO1: Calculate the Rigidity modulus of a given rod.
- CEO2: Verify the output of Logic gate using IC's.
- CEO3: Study the characteristics of given Transisto.
- CEO4: Calibrate an ammeter using Potentiometer.
- CEO5: Analyze the effect of refractive index of a medium using optical

Instruments.

List of Experiments (Any Fifteen)

- 1. Temperature of coefficient of resistance Potentiometer.
- 2. Specific heat capacity of a liquid Joule's calorimeter.
- 3. Emissive power of a surface spherical calorimeter.
- 4. Convex Lens f, R and μ .
- 5. Potentiometer calibration of ammeter.
- 6. Figure of merit [current sensitivity and voltage sensitivity] mirror galvanometer.
- 7. Refractive index of liquid prism spectrometer.
- 8. Zener controlled voltage regulator.
- 9. Surface Tension Capillary rise method.
- 10. Resistance and specific resistance Carey foster bridge.
- 11. Verification of Logic Gates AND, OR, NOT, NAND and NOR using IC's.
- 12. Transistor characteristics CE Configuration.
- 13. Rigidity modulus of the given wire Torsion pendulum with equal masses.
- 14. Spectrometer i-d curve.
- 15. Spectrometer Grating Minimum Deviation method.
- 16. Determination of rigidity modulus of the given rod Static torsion.
- 17. Kundt's tube Young's modulus of the material of the rod.
- 18. Stoke's method Viscosity of highly viscous liquid.
- 19. CRO study of wave forms Lissajou's figures frequency determination.
- 20. Newton's rings Radius of curvature of a convex lens.

TEXT BOOKS:

- 1. Practical Physics, AnchalSrinivasa and R.K. Shukka, New age International Publishers, 2018, second Edition.
- 2. A text book of Physics Practical Part I, Prof. C.C. Ouseph and Prof. V. Srinivasan, S.Visvanathan Publisher ,1990.
- 3. A text book of Physics Practical Part II, Prof. C.C. Ouseph and Prof. V. Srinivasan, S.Visvanathan, Publisher, 1996.

- 1. Practical Physics , S.L.Gupta and V.Kumar , PragatiPrakashan-Meerut,1999, 23rd Edition
- 2. A Text book of Practical Physics, H.S.Aller and H.Moore, Mac millan and Co. Limited, 1941.
- 3. Practical Physics with viva –voce, S.P. Singh, PragatiPrakashan- Meerut,1999, 23rd Edition Advanced level Practical Physics, M.Nelkon and J.M. Ogborn, Heinemann Educational Books Limited London, 1967

COURSE OUTCOMES

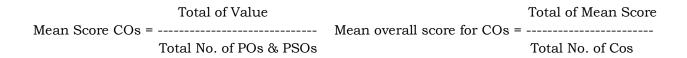
By the end of the course, students will be able to

Course	Course Outcome	Knowledge
outcome No.	Course outcome	level
CO1	Recall the properties of convex lens.	K1
CO2	Calculate the viscosity of highly Viscous liquid.	K2
CO3	Apply the circuit of Zener controlled Voltage regulator real - world situations.	К3
CO4	Analyze the specific heat capacity of different liquids.	K4
CO5	Evaluate the different wavelength of a spectrum.	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Mapping Course Outcome with PO and PSO

COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	TOT	Score
CO1	1	4	4	2	2	3	4	4	3	4	3.2	1
CO2	1	4	3	2	2	4	3	4	3	2	2.8	1
CO3	2	3	4	3	2	3	4	4	3	2	3.0	2
CO4	3	4	3	4	2	3	3	4	4	3	3.3	3
CO5	2	3	3	2	3	3	3	4	3	3	2.9	2
	Mean overall Score										2.76	


Result: The core for this course is 2.5 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

COURSE DESIGNER:

CREDIT:5

COURSE CODE:U21PH4C6

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – IV SEMESTER – CORE COURSE - VI

(For the candidates admitted from the year 2021-22 onwards)

OPTICS

COURSE OBJECTIVES:

To make the Students to

- 1. Acquire knowledge in ray optics.
- 2. Understand mechanism of energy transfer in the form of waves.
- 3. Basic principles of optical instruments.

UNIT - I GEOMATRICAL OPTICS

Aberrations - Spherical aberration in lens Methods of reducing spherical aberration - Coma - Astigmatism - Curvature of the field - Distortion - Chromatic aberration in a lens - Achromatic lenses - Dispersive power: Achromatism in prism - Deviation without dispersion - Dispersion without deviation.

UNIT - II | INTERFERENCE

Introduction - Coherence - Conditions for interference - Interference in thin films - Interference due to reflected light - Conditions for Maxima and Minima - Air wedge - Testing the planeness of a surface - Michelson's interferometer - Principle - Construction - Working - Types of fringes - Applications - Determination of λ and $d\lambda$ - Thickness of a thin transparent sheet - Fabryperot interferometer.

UNIT - III DIFFRACTION AND OPTICAL INSTRUMENT

Fresnel's diffraction - Diffraction at a Circular aperture and Straight edge - Fraunhofer diffraction - Diffraction at a single slit - Double slit - N slits (diffraction grating) - Normal incident - Absent and overlapping spectra of diffraction grating - Huygens eye piece - Rayleigh's criterion - Resolving power of a telescope, microscope and grating.

UNIT - IV | POLARIZATION

Huygen's explanation of double refraction in uniaxial crystals - Quarter wave plate and half wave plate - Babinet's compensator - Production and detection of plane elliptically and circularly polarised light - Nicol prism - Optical activity - Laurent's half shade polarimeter.

UNIT - V | QUANTUM OPTICS

Fibre optic system – Advantages over copper cable communication - Principle - Acceptance angle and Numerical aperture - Types of Optical fibre: Based on materials, refractive index and modes of propagation - Fibre optic communication system - Introduction to Non-linear optics - Linear medium - Nonlinear polarization - Second harmonic generation.

TEXT BOOKS:

- 1. N. Subramaniyam and BrijLal, A Text book of optics, Revised by M.N. Avadhanullah, S.Chand& Co., 2004.
- 2. R. Murugesan and Kiruthiga Sivaprasath, Optics and spectroscopy S.Chand& Co., New Delhi 2006.

- 1. P.K. Chakrabarthi, Geometrical and Physical Optics New Central Book Agency,
- 2. Kolkata., 2005.
- 3. D.R. Khanna and H.R. Gulati, Optics R.Chand& Co., New Delhi. 1979. Ajoychatak, Optics TMH, Delhi.

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES

By the end of the course, students will be able to

Course	Course Outcome	Knowledge
outcome No.	Course Outcome	level
CO1	Develop an understanding of the principles of optics	K2
	Build connections between mathematical development and	K2
CO2	conceptual understanding	
	Learn to use geometrical approximation, understand the	К3
CO3	aberration with an emphasis on image forming systems and they	
	can be reduced	
CO4	Understand geometrical optics, Interference, Diffraction and	K2
	polarization	
CO5	Be acquainted with Fresnel and Fraunhofer diffraction	K6

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course			
Knowledge and skill	✓	Employability oriented	
Skill oriented		Entrepreneurship oriented	

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	POS7	POS8	TOT	Score
CO1	3	2	3	3	2	3	2	3	2	1	3	2	2	31	2.3
CO2	3	2	2	3	2	3	3	1	2	3	3	2	3	32	2.5
CO3	3	2	3	3	2	3	2	3	3	3	2	3	2	34	2.6
CO4	3	3	3	3	2	3	3	2	3	3	2	2	2	34	2.5
CO5	3	3	3	2	3	2	3	2	2	3	2	3	2	33	2.5
Mean overall score									2.5						

Result: The core of the course is 2.5 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

COURSE DESIGNER: DR.S.LALITHA

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR - 639 005 B.Sc. PHYSICS - IV SEMESTER - SKILL BASED ELECTIVE - I

(For the candidates admitted from the year 2021-22 onwards)

DESKTOP PUBLISHING AND PHOTOSHOP - LAB

COURSE OBJECTIVES:

- 1. Compile word document independently along with usage of access for generation of multiple end user.
- 2. Preparation of spread sheet and working with multiple data.
- 3. Hands on experience with MS Office.
- 4. To designing e books, brochures, visiting cards and other printing works.

Adobe page maker can take print in printing press UNIT - I MS Word Document formatting options - Tables, Bullets and Numbering - Font - Alignment Paragraph Formatting - Insert Picture, Clipart, Shapes and WordArt - Header and Footer - Text Box – Page Layout - Mail Merge - Spelling and Grammar. UNIT - II **MS Excel and Power Point** Cell Formatting Options - Formulae and Functions - Charts - Sort - Filter -Grouping. Creating Slide show by using Animation Technique - Slide Master - Clip Art - Picture Editing.

UNIT - III **PAGE MAKER**

Creating new Filets - Entering text - Defining Style - Saving files - Creating Frame Inserting and removing pages - Adding shapes - Creating frame - Creating header and footer - Using story Editor - Developing long documents - Using color - Printing -Practice on Multilingual software like INDIC.

UNIT - IV COREL DRAW

Drawing-lines, Shapes - Inserting Pictures, Objects, Tables, Templates - Use of Pick tools, Zoom tools, Free hand tool, Square tool, Rectangle tool, Text tool, Fill tool - Fonts used in designing of monograms, Logos, Posters, Stickers, Greeting cards, Wedding cards, Visiting cards - Adding special effects - Exporting drawings - Outlining and filling objects - Inserting symbols and Clip arts - Exporting file - Use features of Corel draw to create artistic characters and shapes.

UNIT - V **PHOTOSHOP**

The File menu - The Tools menu - Drawing lines and shapes - Formats - Photo Editing / Inserting setting up - Introduction of layers - The interface managing Palettes - Working with layers - WEB and WEB GALLERY using internet explorer - Image ready -Creating Animations and presentations - Different color scheme Palettes Digital Imaging - Working with different Palettes - Image adjustment options - Labels - Auto labels, Auto contrasts - Curves - Color balance - Posterize - Variations - Preparing the file and work area - Creating three Dimensional effects using Layers - Working with different tools - Editing Selections - Creating images and giving special effects using Filters -Using layer styles - Produce an image by mixing two or more different images using layer - Tips and tricks in Photoshop.

TEXT BOOKS:

n		-	TAKE		DO	\sim	TZ CI
К	HJH:	нκ	$\mathbf{E}\mathbf{N}$	CE	K()		KS:

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Recall the different specific heat capacities of matters	K1
	Understand Maxwell's thermodynamic relations to relate the	K2
CO2	changes in the fundamental and derived properties	
	Apply Stefan's constant to evaluate temperature of sun at a	К3
CO3	particular place	
CO4	Analyze the different principles used in liquefication of gases	K4
CO5	Compare the different statics of particles	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	TOT	Score
CO1	2	3	2	2	3	3	3	3	2	3	26	2.6
CO2	3	2	4	2	3	2	3	4	2	3	28	2.8
CO3	2	3	4	2	2	3	2	4	1	3	27	2.7
CO4	4	3	2	1	4	2	3	3	3	2	27	2.7
CO5	2	4	3	3	2	3	2	2	4	3	28	2.8
Mean overall score						2.72						

Result: The Score for this course is 2.72 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

COURSE DESIGNER: C.GUNASEKARAN

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – V SEMESTER – CORE COURSE - VII

(For the candidates admitted from the year 2021-22 onwards)

ELECTRICITY AND MAGNETISM

COURSE OBJECTIVES:

- 1. To know the fundamentals of electricity, magnetism and electromagnetism.
- 2. To grasp the principle behind the electrical components and simple electrical Instruments.
- 5. To understand electromagnetic Induction and alternating circuits.

UNIT - I | ELECTROSTATICS

Coulomb's law - Electric field due to a point charge - Electric potential - Relation between electric field and electric potential - Electric potential energy - Poisson's and Laplace equations - Flux of the electric field - Gauss's theorem - Electric field due to a uniformly charged solid sphere and a uniform infinite solid Cylindrical charge - Energy stored per unit volume in the medium surrounding the Charged conductor - Electrometer: Quadrant Electrometer - Measurement of ionization current - Attractive disc electrometer.

UNIT - II | MAGNETO STATICS

Definitions: Magnetic Induction - Magnetization - Magnetic susceptibility - Magnetic permeability - Relation between B, H and M - Properties of diamagnetic, paramagnetic and ferromagnetic materials - Soft and Hard Magnetic Materials - BH curve for a magnetic material by magnetometer method - Ballistic Galvanometer method - Hysteresis curve - Retentivity and Coercivity - Calculation of energy loss in a hysteresis cycle.

UNIT - III | MAGNETIC EFFECT OF CURRENT

Ampere's Circuital Law - Biot-Savert's law - Magnetic induction at a point due to a straight conductor carrying current - Force between two parallel current carrying conductors - Fleming's left hand rule - Moving coil Galvanometer - Theory and working of moving coil ballistic galvanometer - Damping correction - Comparison of two capacitors using B.G

UNIT - IV | CURRENT ELECTRICITY AND THERMO ELECTRICITY

Kirchhoff's Laws - Carey Foster's Bridge - Potentiometer - Calibration of Ammeter - Low range and High range voltmeter - Laws of Thermo e.m.f - Definition and Determination of Peltier and Thomson coefficients - Application of thermodynamics to a thermocouple - Measurement of thermo e.m.f of a thermo couple using potentiometer - Thermo-electric Diagrams - Uses.

UNIT - V

ELECTROMAGNETIC INDUCTION AND ALTERNATING CIRCUITS Faraday's Laws of electromagnetic Induction - Determination of Self Inductance by Rayleigh's Method - Mutual Inductance - Experimental determination of Mutual Inductance by direct method - Coefficient of Coupling - Eddy Current - Uses AC circuits -Ac- average and rms value - AC through L and R in series vector diagram method - AC through C and R in series vector diagram method - LCR series and parallel circuit - sharpness of resonance - Q factor, Power factor, choke coil.

TEXT BOOKS:

- 1. Murugeshan, R., 2006, Electricity and Magnetism Chand & Co., New Delhi.
- 2. Sehgal Chopra- Sehgal, Electricity and magnetism, Sultan Chand and sons Ltd, New Delhi, 6th edition reprint, 2010

- 1. Brijlal and Subrahmanyam, Electricity and Magnetism, Ratan Prakashan Mandir, Agra, 1995. (Unit 1,2)
- 2. R.Murugeshan, Electricity and Magnetism, S.Chand and Company, 2005.(Unit 3-5)
- 3. D.N. Vasudeva, Fundamentals of Magnetism and Electricity, S.Chand& Co, 2007.
- 4. Sehgal, Chopra and Sehgal, Electricity and Magnetism, Sultan Chand and Sons, New Delhi, 2014.
- 5. K.K. Tiwari, Electricity and Magnetism, S. Chand and Company, New Delhi, 2002.

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Understand the fundamental principles of electrostatics, able to employ methods of calculus to calculate electric field from a distribution of charges.	K2
CO2	Understand Biot-Savart law and use to compute the field due to current carrying conductors	K2
CO3	To apply the basic knowledge of electromagnetic induction to explain observational phenomenon.	К3
CO4	Study Kirchoff's law and use it to analyze circuits	K4
CO5	The student has acquired knowledge of Faraday's Laws of electromagnetic Induction.	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course				
Knowledge and skill		Employability oriented		
Skill oriented	✓	Entrepreneurship oriented		

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score
CO1	1	3	4	2	2	3	3	3	3	4	2.8
CO2	1	4	3	3	2	4	3	4	3	3	3.0
CO3	3	3	3	3	2	3	3	4	3	3	3.0
CO4	3	4	3	4	2	3	3	4	4	3	3.3
CO5	2	3	3	2	3	3	3	4	3	3	2.9
Mean overall score							2.72				

Result: The Score for this course is 2.72 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

COURSE DESIGNER: T.SEETHALAKSHMI

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – V SEMESTER – CORE COURSE - VIII

(For the candidates admitted from the year 2021-22 onwards)

ATOMIC AND NUCLEAR PHYSICS

COURSE OBJECTIVES:

To make the Students to

- 1. Understand the positive rays, soft and hard x-rays.
- 2. Recognize how the electrons are filled in various orbitals.
- 3. Examine why sodium vapor emits yellow light with two different wavelengths.
- 4. Evaluate various nuclear models.
- 5. Assess the importance of nuclear fission and nuclear fusion.

UNIT - I POSITIVE RAY AND X-RAY ANALYSIS

Positive Rays: Properties of positive rays – determination of e/m ratio of positive rays by Thomson's parabola method - critical potential – Frank- Hertz's experiment - X- rays: Production of X- rays - Continuous and Characteristic X- rays - Scattering of X-rays - Compton Scattering- properties and applications of x-rays- solving problems.

UNIT - II VECTOR ATOM MODEL

Various quantum numbers - Coupling Schemes - Pauli's exclusion principle -Electronics configuration of elements - Periodic classification of elements - Magneticdipole moment of electron due to orbital and spin motion - Bohr Magneton - Stern and Gerlach Experiment and its applications-problems.

UNIT - III FINE STRUCTURE OF SPECTRAL LINES

Special terms and notations - Selection rules - Intensity rule and interval rule - Fine structure of sodium D lines - Zeeman effect - Larmor's theorem - Debye's quantum mechanical explanation of the normal Zeeman effect - Anomalous Zeeman effect - Theoretical explanation Lande's g-factor - Explanation of splitting of D1 and D2 lines of sodium - Paschen back effect and Stark effect.

UNIT - IV BASIC NUCLEAR PROPERTIES

Nuclear size, charge, mass, spin, isotopes, isomers - Nuclear Magnetic dipole moment - Electric quadrapole moment - Mass defect - Binding energy - Packing fraction - Nuclear forces - Nuclear models: Shell model - Liquid drop model - Particle accelerators: Cyclotron - Betatron - Detectors: Wilson's cloud chamber - Bubble chamber.

UNIT - V | NUCLEAR REACTIONS AND ELEMENTARY PARTICLES

Q-value of nuclear reaction – Chain reaction - Nuclear reaction cross section - Nuclear Fission - Energy released in fission - Nuclear fusion – Nuclear breeder reactor - Source of Solar energy - Plasma - Magnetic bottle - Plasma confinement - Elementary particles: Baryons - Leptons - Mesons - Strange particles.

TEXT BOOKS:

- 1. S. Murugesan, Modern Physics S.Chand& Co.
- 2. J.B Rajam, Modern Physics S. Chand & Co.

- 1. G.JoseRobinand A.Ubald Raj, Modern Physics Indira Publications.
- 2. N.Subramaniam and BrijLal, Atomic And Nuclear Physics.

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Analyze why soft x-rays are for medical purpose and hard x-rays	K5
	are used for research purpose.	
CO2	Distinguish the orbital and spin motion of the electron	К3
CO3	Calculate the Lande's g-factor and wavelength of light emitted	K4
	by sodium vapor lamp	
CO4	Analyze how the mass difference is converted into energy	K3
CO5	Evaluate the energy released by I Kg of U235	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course	
Knowledge and skill	Employability oriented
Skill oriented	Entrepreneurship oriented

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	TOT	Score
CO1	3	3	2	3	3	3	3	2	2	3	27	2.7
CO2	2	3	3	3	3	3	3	2	3	2	27	2.7
CO3	3	3	2	3	2	3	2	3	3	3	26	2.6
CO4	2	3	3	2	3	2	3	2	3	3	25	2.5
CO5	3	3	2	3	3	3	3	2	3	2	27	2.7
Mean overall score										2.64		

Result: The Score for this course is 2.64 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = ----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

COURSE DESIGNER: DR.K.PUSHPANATHAN

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – V SEMESTER – CORE COURSE - IX

(For the candidates admitted from the year 2021-22 onwards)

QUANTUM MECHANICS AND RELATIVITY

COURSE OBJECTIVES:

To make the Students to

- 1. Understand the positive rays, soft and hard x-rays.
- 2. Recognize how the electrons are filled in various orbitals.
- 3. Examine why sodium vapor emits yellow light with two different wavelengths.
- 4. Evaluate various nuclear models.
- 5. Assess the importance of nuclear fission and nuclear fusion.

UNIT - I | FOUNDATIONS OF QUANTUM MECHANICS

Inadequacy of classical mechanics - Black body radiation - Characteristics of black body radiation - Kirchoff's law - Wien's law - Stefan's law - Rayleigh Jean's law - Energy distribution in black body - Planck's hypothesis and Radiation law - Planck's quantum theory - Properties of photons - Laws of photo electric effect - Experiment - Einstein's photo electric equation.

UNIT - II | MATTER WAVES

De - Broglie's waves - de-Broglie wavelength - de-Broglie concept of stationary orbits - de-Broglie wave length associated with electron accelerated through a potential difference - Velocity of de-Broglie waves - Properties of matter waves - Experimental verification of matter waves: G.P. Thomson experiment - Davisson and Germer's experiment.

UNIT - III DEVELOPMENT OF QUANTUM MECHANICS

Concept of wave function and its physical significance - Wave velocity and group velocity - Relation between phase velocity and group velocity for a Non-Relativistic free particle - Normalized and orthogonal wave functions - Expansion theorem - Conditions satisfied by wave function - Heisenberg's uncertainty principle - Experiment: Heisenberg's Gamma ray microscope - Applications: Minimum energy of a harmonic oscillator – Energy of a particle in one dimensional box.

UNIT - IV OPERATOR FORMALISM & SCHROEDINGER'S WAVE EQUATION

Operators associated with different observables - Expectation values of dynamical quantities - Eigen values and Eigen functions - Orbital angular momentum operator and their commutation rules - Time - Independent wave equation - Time-dependent wave equation - Application: Particle in one dimensional box.

UNIT - V RELATIVITY

Frame of reference - Galilean transformation equations - Michelson - Morley experiment - Postulates of special theory of relativity - Lorentz transformation equations - Length contraction - Time dilation - Addition of velocities - Variation of mass with velocity - Mass-Energy equivalence - Relation between relativistic momentum and energy.

TEXT BOOKS:

- 1. SatyaPrakash, Quantum Mechanics, PragatiPrakashan, Meerut, 2008.
- 2. A.K. Saxena, Principles of Modern Physics, Narosa publishing house, New Delhi, 2005. R. Murugesan&KiruthigaSivaprasath, Modern Physics, S.ChandPublishing, New Delhi.
- REFERENCE BOOKS:
 - 1. H.S. Mani and G.K. Metha, Introduction to Modern physics, EWP, New Delhi, LCSE, 1988.
 - 2. B.L. Theraja, Modern physics, S. Chand publishing, New Delhi.
 - V. Rajendran and A. Marikani, Applied Physics for Engineers, TMH, New Delhi, 2001

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Understand the general concepts and principles in quantum mechanics.	K3
CO2	Acquire knowledge related to matter waves.	K2
CO3	Solve the time independent and time dependent Schrödinger equation	K5
CO4	Master the concepts of angular momentum and spin.	К3
CO5	Appreciate the importance of relativity in mechanics.	K4

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course							
Knowledge and skill	Employability oriented						
Skill oriented	Entrepreneurship oriented						

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score
CO1	3	3	2	2	3	3	3	3	2	3	2.7
CO2	3	3	2	3	2	3	3	2	2	3	2.6
CO3	3	2	3	3	3	3	2	3	2	2	2.6
CO4	2	3	2	3	3	3	3	2	2	3	2.6
CO5	3	3	2	3	2	2	3	3	3	3	2.7
Mean overall score								2.64			

Result: The Score for this course is 2.64 (Moderate Relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

COURSE DESIGNER: DR.V.SHANMUGAM

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – V SEMESTER – ELECTIVE COURSE - I

(For the candidates admitted from the year 2021-22 onwards)

BASIC ELECTRONICS

COURSE OBJECTIVES:

To make the Students to

- 1. Have a basic knowledge of semiconductor diode, rectifier and filter circuits.
- 2. Understand transistor biasing and working principle of Amplifiers.
- 3. Explain feedback and oscillatory circuits.
- 4. Comprehend the operation and characteristics of FET, MOSFET, SCR and UJT.
- 5. An idea about operational amplifiers.

UNIT - I | SEMICONDUCTOR AND PN JUNCTION DIODE

Types of semiconductors - Intrinsic semiconductors - Extrinsic semiconductors - Forward and reverse biased PN junction - V-I characteristics - Half wave and full wave rectifiers - Ripple factor - Efficiency - Zener diode - Reverse characteristic of Zener diode - Zener diode shunt regulator - Clipping circuits - Positive clipper - Negative clipper - Clamping circuits - Voltage doubler

UNIT - II | SPECIAL PURPOSE DIODES AND OPTOELECTRONIC DEVICES

Tunnel diode - V-I Characteristics - Parameters - Varactor diode - PIN diode - Light Emitting diode - Multicolour LEDs - Seven segment display - Liquid crystal display - Advantages and disadvantages of LCDs - Photo diode - Photoconductive cell - Photovoltaic cell—Laser diode.

UNIT - III BIJUNCTION TRANSISTOR AND FIELD EFFECT TRANSISTOR

BJT symbols - BJT biasing - Operation of npn and pnp transistors - Transistor configurations - Characteristics of a transistor in CB and CE configurations - Current gain in CB and CE configurations - Operating point - Load line - Voltage divider bias - h-parameters of a transistor - Hybrid equivalent circuit for CE transistor - FET and its types - JFET - Operation - Characteristics - Parameters - Types of MOSFET (qualitative analysis only)

UNIT - IV | AMPLIFIERS AND OSCILLATORS

Classification of amplifiers: RC coupled amplifier - Frequency response of RC coupled amplifier - Power amplifiers - Class-A amplifier - Class-B push-pull amplifier - Efficiency - Feedback amplifiers - Principle of feedback amplifier - Advantages and disadvantages of negative feedback. Classification of oscillators: Barkhausen criterion - Hartley oscillator - Colpitt's oscillator - Phase shift oscillator - Wien bridge oscillator.

UNIT - V OPERATIONAL AMPLIFIER

Ideal OP-AMP - Inverting amplifier - Non-inverting amplifier - Differential amplifier - CMRR - d.c characteristics: Input bias current - Input offset current - Input offset voltage - a.c characteristics - Frequency response - Slew rate - Applications: Adder - Sub tractor - Differentiator - Integrator - Comparators - Schmitt trigger - Weighted resistor DAC - R- 2R ladder DAC - Counter type ADC.

TEXT BOOKS:

- 1. Dr. R.S. Sedha, A text book of applied electronics Revised edition 2013 S.CHAND Publishing, New Delhi (For Unit-I to Unit-IV).
- 2. D. Roy Choudhury, Linear Integrated circuits Fourth edition, New age international (P) Limited, New Delhi (For Unit-V).

- 1. Bhargava Kulshreshta and Gupta, Basic Electronics and linear circuits DTMH 1989.
- 2. Beboo and Burrows, Integrated circuit and Semiconductor devices TMHG 1989. Mill Man Halkias, Integrated Electronics TMH.

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Energy level of semiconductors.	K5
CO2	Applications of power electronics	К3
CO3	Difference between BJT, FET, MOSFET	K4
CO4	how to construct the oscillators and amplifiers	К3
CO5	students will be able to construct some circuits using op-amps	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course	
Knowledge and skill	Employability oriented
Skill oriented	Entrepreneurship oriented

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score
CO1	3	3	2	2	3	3	3	3	2	3	2.7
CO2	3	3	2	3	2	3	3	2	2	3	2.6
CO3	3	2	3	3	3	3	2	3	2	2	2.6
CO4	2	3	2	3	3	3	3	2	2	3	2.6
CO5	3	3	2	3	2	2	3	3	3	3	2.7
Mean overall score								2.64			

Result: The Score for this course is 2.64 (Moderate Relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

COURSE DESIGNER:

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – V SEMESTER – SKILL BASED ELECTIVE - II

(For the candidates admitted from the year 2021-22 onwards)

ELECTRICAL WIRING AND WINDING LAB

COURSE OBJECTIVES:

To make the Students to

- 1. To check the electrical power supply from the switch.
- 2. It shows the components of the circuits as simple shapes.
- 3. Electrical wiring is the electrical distribution through the wires.
- 4. Wiring diagram gives information about the relative position on the device.

LIST OF EXPERIMENTS

- 1. Control of a lamp through 2-way switch.
- 2.Two lamps dimmer
- 3. Series control of 2-lamps.
- 4. Parallel control of 2-lamps.
- 5. Control of 2-lamps with two switches and a 3-pin wall socket.
- 6. Service connections.
- 7. Estimations for a small pump house.
- 8. Estimation for a small house PVC WIRING.
- 9. Street lighting.
- 10. Estimation for SAW mill.
- 11. Designing of winding of a Transformer(230V, 12V-0-12V with 5 Amps)
- 12. Winding of a no volt coil for a direct OV line starter.
- 13. Winding of a fluorescent lamp choke.
- 14. End connections of a 3-phase induction motor.
- 15. Winding of a Rotor and stator of a single phase induction motor.

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score
CO1	2	3	2	4	3	3	3	3	2	4	28
CO2	3	2	4	2	3	2	3	4	2	3	28
CO3	2	3	4	2	3	3	2	4	3	3	30
CO4	4	3	2	1	4	2	3	3	3	2	27
CO5	2	4	3	3	2	3	2	2	4	3	28
Mean overall score					2.82						

Result: The Score for this course is 2.82 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 – 1.0	1.1 – 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value	Total of Mean Score
Mean Score COs =	Mean overall score for COs =
Total No. of POs & PSOs	Total No. of Cos

COURSE DESIGNER: DR.C.GUNASEKARAN

CHAIRMAN – BOS

CONTROLLER OF EXAMINATIONS

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – V SEMESTER – SKILL BASED ELECTIVE - III

(For the candidates admitted from the year 2021-22 onwards)

PROGRAMMING IN "C" LANGUAGE (LAB)

COURSE OBJECTIVES:

To make the Students to

- 1. Compile word document independently along with usage of access for generation of multiple end user.
- 2. Preparation of spread sheet and working with multiple data.
- 3. Execution of simple "C" Programme.
- 4. Assimilate knowledge on working of internet.
- 5. Hands on experience with MS Office and "C" Programming.

BASIC STRUCTURE OF C PROGRAMMING

Programs - Constants - Variables - Data type - Declaration of variables - Defining symbolic constants, operators and expression - Formatted input and output statements.

CONTROL STATEMENTS

Simple if, If-Else, Else-if ladder - Switching statements - Go- to statement - Break and continue looping - While - do and For statements.

ARRAYS

User defined functions - String functions - strcpy, strlen, strcmp - Elementary idea.

DEVELOPMENT OF ALGORITHM, FLOW CHART AND PROGRAM FOR THE FOLLOWING.

- 1. Write a C Program to print your name, date of birth and mobile number.
- 2. Write a C Program to get Average of a set of numbers.
- 3. Write a C program to find the Area of a triangle.
- 4. Write a C Program to find greatest of three numbers.
- 5. Write a C Program to check if number is odd or even.
- 6. Write a C Program to find sum of first n natural numbers.
- 7. To find Sorting a set of numbers in ascending and descending order.
- 8. Write a C Program to solve quadratic equation.
- 9. Write a C Program to find factorial using recursion.
- 10. Write a C Program to calculate mean and variance.

TEXT BOOK:

E. Balagurusamy, Programming in ANSI "C".

REFERENCE BOOK:

Yashavant P. Kanitkar, Let Us C - Fifth Edition.

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome
CO1	Students will gain a thorough understanding of the fundamentals of C
	programming.
CO2	Students will be able to code, compile and list C programs
CO3	Students can learn an Advanced C programming course.

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score
CO1	3	4	3	3	3	3	2	3	4	3	3.1
CO2	3	3	4	3	4	3	3	4	2	3	3.2
CO3	4	2	3	3	4	3	4	3	3	2	3.1
CO4	4	3	3	4	3	3	3	2	4	3	3.2
CO5	3	3	3	3	3	4	3	3	3	4	3.2
Mean overall score								3.16			

Result: The Score for this course is 3.16 (High Relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

COURSE DESIGNER: G.MAHALAKSHMI

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – VI SEMESTER – CORE COURSE - X

(For the candidates admitted from the year 2021-22 onwards)

CORE PRACTICAL III (GENERAL)

COURSE OBJECTIVES:

To make the Students to

- 1. To make the students to understand experimental physics.
- 2. To apply the theoretical knowledge for developing new devices.

LIST OF EXPERIMENTS

- 1. Koenig's Method Uniform Bending-Young's Modulus.
- 2. Spectrometer-i-i' Curve.
- 3. Spectrometer-Small angle Prism
- 4. Spectrometer-Grating Normal Incidence Method-dispersive power.
- 5. Spectrometer-dispersive power of a given prism.
- 6. Spectrometer-Cauchy's Constant.
- 7. Spectrometer-Fraunhofer lines.
- 8. Spectrometer-Hartmann's Formula.
- 9. Earth Inductor using B.G-Determination of Band H.
- 10. Field along the axis of a coil-Determination of M.
- 11. M and Habsolute determination using deflection and vibration Magne to meter.
- 12. Potentiometer- EMF of a thermocouple.
- 13. Potentiometer-Temperature Coefficient of thermistor.
- 14. Potentiometer- High range voltmeter calibration.
- 15. Band gap energy of Thermistor.
- 16. Ballistic Galvanometer-Figure of merit.
- 17. B.G. Absolute capacity of condenser.
- 18. B.G.-Absolute Self Inductance.
- 19. B.G-Absolute Mutual Inductance.
- 20. B.G Comparison of Mutual Inductance.
- 21. Anderson's bridge -Self Inductance of a coil.
- 22. He-Ne Laser experiments.

TEXT BOOKS:

- 1. Practical Physics, Anchal Srinivasa & R.K.Shukla, New age International Publishers, 2018, second edition.
- 2. A textbook of Physics Practical Part I, Prof. C.C.Ouseph & Prof. V.Srinivasan, Viswanathan Publishers, 1990
- 3. A textbook of Physics Practical-Part II, Prof.C.C. Ouseph&Prof.G.RangaRajan.
- 4. S. Viswanathan Publishers, 1996
- 5. Advanced Practical Physics II, Dr.S.P.Singh, PragatiPrakashan–Meerut, 2000, Twelth Edition

- 1. Practical Physics with Viva—voce, Dr.S.P.Singh, PragatiPrakashan—Meerut, 1999 Twenty third Edition.
- 2. Practical Physics, S.L.Gupta & V.Kumar, PragatiPrakashan Meerut, 1999, Twenty third, Edition.
- 3. Advanced Level Practical Physics II, M.Nelkon & J.M. Ogborn, Heinemann Educational Books. Ltd-London. 1967
- 4. A text book of Practical Physics, H.S.Aller & H.Moore, Macmillan and Co &Limited, 1941

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome
CO1	Students will gain a thorough understanding of the fundamentals of C Programming.
CO2	Students will be able to code, compile and list C programs.
CO3	Students will be able to code, compile and list C programs.

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score
CO1	3	4	3	3	3	3	2	3	4	3	3.1
CO2	3	3	4	3	4	3	3	4	2	3	3.2
CO3	4	2	3	3	4	3	4	3	3	2	3.1
CO4	4	3	3	4	3	3	3	2	4	3	3.2
CO5	3	3	3	3	3	4	3	3	3	4	3.2
Mean overall score								3.16			

Result: The Score for this course is 3.16 (High Relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

COURSE DESIGNER: DR.V.KATHIRAVAN

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – VI SEMESTER – CORE COURSE - XI

(For the candidates admitted from the year 2021-22 onwards)

CORE PRACTICAL IV (ELECTRONICS)

COURSE OBJECTIVES:

To make the Students to

- 1. Explain the characteristics and applications of operational amplifier.
- 2. Verify FET and its characteristics.
- 3. Design circuits using universal gates such as NAND and NOR.
- 4. Design and verify truth tables of adder, subtractor.
- 5. Write mnemonics for simple applications using 8085 microprocessor.

SECTION-A ELECTRONICS

(Any twelve experiments)

- 1. Series and Parallel resonance circuits.
- 2. Single Stage RC coupled amplifier Transistor.
- 3. Emitter follower Frequency response.
- 4. IC regulated power supply.
- 5. Hartley oscillator using transistor.
- 6. Colpitt's Oscillator using transistor.
- 7. Phase Shift Oscillator using IC 741.
- 8. Astable Multi vibrator using IC 741.
- 9. FET Characteristics.
- 10. FET amplifier.
- 11. RS and JK Flip Flops using gates.
- 12. Universal Gates NAND/NOR and basic gates from universal gates.
- 13. Adder and Subtractor Op-Amp.
- 14. Verification of De Morgan's theorems and Boolean Algebra.
- 15. OP-Amp: Integrator and Differentiator.

SECTION-B MICROPROCESSOR 8085

(Any three experiments)

- 16.8-bit Addition and Subtraction.
- 17.8-bit Multiplication and Division.
- 18. Ascending and Descending Order.
- 19. Largest and Smallest number in an Array.
- 20. Conversion from decimal to hexadecimal system.
- 21. Conversion from hexadecimal to decimal system.
- 22. Sum of N numbers.

TEXT BOOKS:

- 1. Practical Physics, AnchalSrinivasa&R.K.Shukla, New age International Publishers, 2018, second edition.
- 2. A textbook of Physics Practical Part I, Prof.C.C. Ouseph&Prof.V.Srinivasan, S. Viswanathan Publishers, 1990
- 3. A textbook of Physics Practical Part II, Prof.C.C. Ouseph& Prof. G.RangaRajan.
 - S. Viswanathan Publishers, 1996
- 4. Advanced Practical Physics II, Dr.S.P.Singh, PragatiPrakashan–Meerut, 2000, Twelth Edition

- 1. Practical Physics with Viva voce, Dr.S.P.Singh, PragatiPrakashan–Meerut, 1999 Twenty third Edition.
- 2. Practical Physics, S.L.Gupta&V.Kumar, PragatiPrakashan–Meerut, 1999, Twenty third, Edition
- 3. Advanced Level Practical Physics II, M.Nelkon& J.M. Ogborn, Heinemann Educational Books. Ltd–London. 1967.
- 4. A text book of Practical Physics, H.S.Aller&H.Moore, Macmillan and Co &Limited, 1941.

COURSE OUTCOMES

By the end of the course, students will be able to

Course outcome No.	Course Outcome
CO1	Students will gain a thorough understanding of the fundamentals of C
	programming.
CO2	Students will be able to code, compile and list C programs.
CO3	Students will be able to code, compile and list C programs.

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score
CO1	3	4	3	3	3	3	2	3	4	3	3.1
CO2	3	3	4	3	4	3	3	4	2	3	3.2
CO3	4	2	3	3	4	3	4	3	3	2	3.1
CO4	4	3	3	4	3	3	3	2	4	3	3.2
CO5	3	3	3	3	3	4	3	3	3	4	3.2
Mean overall score									3.16		

Result: The Score for this course is 3.16 (High Relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

COURSE DESIGNER: S.SAKTHIVEL

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – VI SEMESTER – CORE COURSE - XII

(For the candidates admitted from the year 2021-22 onwards)

SOLID STATE PHYSICS

COURSE OBJECTIVES:

To make the Students

- 1. To study bondings in crystals and various structures.
- 2. To determine crystal structure.
- 3. To study basic electric laws and important theories.
- 4. To distinguish magnetic materials and super conductors.
- 5. To study Dielectrics and ferroelectrics.

UNIT - I | CRYSTAL STRUCTURE AND CHEMICAL BONDING

Elementary concepts of crystals: Distinction between crystalline and amorphous solids - isotropic and anisotropic crystals with examples - Space lattice - Primitive and Unit cell - Brava is lattices - Crystal directions - Miller indices - Separation between lattice planes in a cubic crystal - Crystal structure: SC, BCC, FCC and HCP - Bonding in solids-primary bonds - Ionic, covalent and metallic bonds - secondary bonds - Vander Waals' bond and hydrogen bond.

UNIT - II | CRYSTALLOGRAPHY

X ray Spectrum - Moseley's law - diffraction of X-rays by crystals - Bragg's law - Bragg's Diffrac to meter - Determination of Crystal structure: Debye Scherrer method - evaluation of lattice parameter 'a' for a simple cubic structure - Laue's method, rotating crystal method –Reciprocal lattice.

UNIT - III ELECTRONS IN SOLIDS

Free electron theory: Drude Lorentz theory - Expression for current density - Ohm's law - Electrical conductivity - Temperature dependence of electrical conductivity in metals - Thermal conductivity - Wide-Mann and Franz Law - Hall effect - Hall voltage and Hall coefficient - Mobility and Hall angle - Importance of Hall effect - Experimental determination of Hall coefficient

UNIT - IV MAGNETIC AND SUPERCONDUCTING MATERIALS

Magnetism - Langevin's theory of dia and paramagnetism - Wien's theory of ferromagnetism - Quantum theory of ferromagnetism (Heisenberg's model) - Domain theory of ferromagnetism- ferromagnetic hysteresis - Ferrites - Anti ferromagnetic materials. Superconductors: Properties - Critical temperature - Isotopic effect - Meissner effect - Type I and Type II superconductor

UNIT - V | DIELECTRICS AND FERROELECTRICS

Basic definitions of dielectrics - Types of polarization - Effect of frequency and temperature on polarization - Local field (internal field) - Clausiu - Mosotti relation - Dielectric loss and breakdown - Determination of Dielectric constant - applications - Ferroelectric crystals - Ferroelectric domains - Hysteresis effect in a ferroelectric materials.

TEXT BOOKS:

- 1. C. Kittel, Introduction to Solid State Physics John Wiley (2004).
- 2. M. Arumugam, Material Science Anuradha Agencies, (2004).
- 3. G.Vijayakumari, Engineering Physics –Vikas Publications.

- 1. Raghavan, Materials Science and Engineering (2004).
- 2. Azaroff, Introduction to Solids (2004).
- 3. A.J. Deckker, Solid State Physics-(2004)

Lecture Method, ICT, Seminar, Quiz.

COURSE OUTCOMES:

By the end of this course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Understand the fundamental knowledge of crystals	K1
CO2	Acquiring the knowledge of x-ray spectrum, Diffraction effect and calculating lattice parameter.	K2
CO3	Analyze and study the merits and demerits of free electron theory and electrical conductivity	K3
CO4	Ability to Distinguish different types of magnetic materials.	K4
CO5	Explore various types of Polarization and its influence on Dielectrics and ferrolectrics	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course			
Knowledge and skill	✓	Employability oriented	
Skill oriented		Entrepreneurship oriented	

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO ₃	PO4	PO5	PSO ₁	PSO2	PSO3	PSO4	PSO5	POS6	POS7	POS8	TOT	Score
CO1	3	3	2	-	3	3	3	2	2	2	2	3	2	30	2.3
CO2	3	3	3	3	1	2	3	2	2	2	3	2	2	30	2.3
CO3	3	2	1	3	1	2	3	2	2	3	-	2	1	23	1.8
CO4	3	3	3	1	2	3	3	3	3	-	3	2	2	31	2.9
CO5	3	2	3	2	2	3	2	2	3	2	2	2	1	29	2.2
Mean overall score											2.3				

Result: The core for this course is 2.3 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

COURSE DESIGNER: V.SUBHA

CREDIT:5

COURSE CODE:U21PH6C13

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – VI SEMESTER – CORE COURSE - XIII

(For the candidates admitted from the year 2021-22 onwards)

SPECTROSCOPY AND LASER PHYSICS

COURSE OBJECTIVES:

To make the Students

- 1. To study the electromagnetic radiation spectrum and techniques and instrumentation of microwave spectroscopy.
- 2. To understand the vibrations of diatomic molecule and poly atomic molecules by vibrational spectroscopy.
- 3. To study the classical theory of Raman Effect and techniques and instrumentation of Raman spectroscopy.
- 4. To know the Laser, principle, characteristics and different types of Lasers
- 5. To know the applications of Laser in material processing, Holography and medical endoscope.

UNIT - I | MICROWAVESPECTROSCOPY

Introduction to EM radiation-The rotation of molecules, its spectra, Diatomic Molecules-Rigiddi atomic molecule-Intensities of spectra lines-Effect of is otopicsubstitution-Non rigid, rotator its spectrum-Techniques and Instrumentation of Microwave Spectros copy.

UNIT - II VIBRATIONAL SPECTROSCOPY

Vibrating diatomic molecule-Energy of diatomic molecule - Harmonic Oscillator - Vibrating rotator - Vibration - Rotation Spectrum of CO - Vibrations of poly atomic molecules Fundamental vibrations and their symmetry - Overtones and combinations off requencies - Sample preparation—Techniques and instrumentation.

UNIT - III RAMAN SPECTROSCOPY

Classical theory of Raman Effect-Pure rotational Raman Spectra-Linear, Symmetric top molecules - Pure Vibration Raman spectra-Raman activity of vibration - Rule of mutual exclusion Principle - Polarization of light and the Raman Effect —Techniques and instrumentation.

UNIT - IV LASER PHYSICS

Introduction to Lasers - Laser principle - characteristics of laser - Einstein's co-efficient derivation - Population Inversion - Pumping action - Optical resonator - Types of lasers - Nd-YAG, CO2, Dye laser and semiconductor laser - Homo junction and Hetro junction.

UNIT - V | APPLICATIONSOFLASER

Material processing: welding, drilling, cutting and heat treatment - Holography - constructionandReconstruction-Applications-DifferencebetweenHolographyand photography - LIDAR-Medical applications.

TEXT BOOKS:

- 1. C.N.Banwell, *Fundamental of molecular spectres copy*, -Tata McGraw Hill Publishing Co. Ltd., 3rd Edition (1972).
- 2. G.Aruldas Molecular, Structure and spectroscopy Prentice Hall of India.

- 1. B.B.Laud, Lasers and non-linear optics Wiley Eastern Ltd., (1985)
- 2. K.Thiyagarajan and A.K.Ghatak, LASERS: Theory and applications-Macmillan India Ltd.

Chalk and Talk Lectures, Video Lectures, Seminors, Group Discussions

COURSE OUTCOMES:

By the end of this course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Understand microwave spectroscopy and applications	K1
CO2	Analyze prerequisite in a molecule towards its rotational and vibrational activity	K2
CO3	Understand Raman Spectroscopy and instrumentation	К3
CO4	Understand the basic principle and working of different types of Lasers	K4
CO5	Know the applications of Lasers in various fields	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course	
Knowledge and skill	Employability oriented
Skill oriented	Entrepreneurship oriented

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	POS7	POS8	TOT	Score
CO1	3	3	2	-	3	3	3	2	2	2	2	3	2	30	2.3
CO2	3	3	3	3	-	2	3	2	2	2	3	-	3	29	2.2
CO3	3	2	-	3	-	2	3	2	2	3	-	2	3	25	1.9
CO4	3	3	3	1	2	3	3	3	3	-	3	2		29	2.2
CO5	3	2	3	2	2	3	2	2	3	2	2	2	2	30	2.3
Mean overall score										2.6					

Result: The core for this course is 2.6 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total of Mean Score

Mean overall score for COs = -----
Total No. of Cos

COURSE DESIGNER: DR.V.KATHIRAVAN

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – VI SEMESTER – ELECTIVE COURSE - II

(For the candidates admitted from the year 2021-22 onwards)

DIGITAL ELECTRONICS AND MICROPROCESSOR

COURSE OBJECTIVES:

To make the Students to

- 1. Have a basic knowledge of semiconductor diode, rectifier and filter circuits.
- 2. Understand transistor biasing and working principle of Amplifiers.
- 3. Explain feedback and oscillatory circuits.
- 4. Comprehend the operation and characteristics of FET, MOSFET, SCR and UJT.
- 5. An idea about operational amplifiers.

UNIT - I Number Systems, Logic Gates & Boolean Algebra and K - Maps

Different Number Systems - Binary, Octal and Hexa-decimal Conversion between the number systems. Different Digital codes - ASCII, BCD, Gray codes. AND, OR and NOT Gates- Universality of NAND & NOR gates, Special Gates - Ex-OR, Ex-NOR - Boolean Laws, De-Morgan's Theorems. Simplification of Logical expression using Boolean algebra, Karnaugh Maps - 4 Variables.

UNIT - II Combinational and Memory Circuits

Half and full adder - Half and full Sub tractor - Basic study of TTL, CMOS - Multiplexers and De - multiplexers - Encoders and Decoders - Decimal to BCD, Parity Generator and Checker - Memories: Read-only memories (ROM), PROM, EPROM and RAM.

UNIT - III Sequential Circuits

Sequential Circuits: RS, D, JK and T Flip-Flops - Edge Triggered Flip-Flops - Master-Slave JK Flip-Flop - Shift Register: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in - Parallel-out - Counters: Asynchronous and Synchronous Counters, Decade Counter, UP- DOWN Counters, Ring Counter.

UNIT - IV Microprocessor (8085)

Operators associated with different observables - Expectation values of dynamical quantities - Eigen values and Eigen functions - Orbital angular momentum operator and their commutation rules - Time - Independent wave equation - Time-dependent wave equation - Application: Particle in one dimensional box.

UNIT - V | 8085 Programming

Algorithm and Flowcharts - Simple programs - Addition and subtraction of two 8-bit data - Sum of a string of data - 8 bit Multiplication and Division - Block transfer - Smallest and largest number in an array - Ascending and Descending order of array of numbers.

TEXT BOOKS:

- 1. Digital Principles and Applications by Donald P. Leach & Albert Paul Malvino. (Glenoe, 1995)
- 2. Microprocessor Architecture, Programming and Application with the 8085 by Ramesh S. Goankar (Prentice hall, 2002).

REFERENCE BOOK:

1. Digital Fundamentals, 3rd Edition by Thomas L. Floyd (Universal Book Stall, India 1998). Microprocessor Architecture, Programming and systems featuring the 8085 by William A. Rout (Thomson Delmar Learning, 2006).

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES:

By the end of this course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Understand the structure of various number systems and basic	K2
COI	logic gates.	
CO2	Ability to solve the Boolean Expressions using Boolean	K5
CO2	algebra and Karnaugh Maps.	
CO3	Develop skill to build combinational circuits and study	К3
CO3	different types of semiconductor memories.	
CO4	Ability to construct sequential circuits and to design counters.	K4
CO5	Understand the architecture of 8 bit Microprocessor and to	K2
CO3	write simple ALP programs.	

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6 = Create

Nature of Course			
Knowledge and skill	✓	Employability oriented	
Skill oriented		Entrepreneurship oriented	

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	Score
CO1	4	3	2	3	4	4	4	4	3	3	2	3.3
CO2	4	4	3	4	3	4	3	4	3	4	3	3.5
CO3	4	3	3	3	4	4	4	3	3	3	1	3.2
CO4	3	4	1	4	3	4	3	4	3	3	3	3.2
CO5	4	4	2	4	4	3	4	4	3	4	3	3.5
Mean overall score												

Result: The core for this course is 3.34 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

COURSE DESIGNER: S.SAHUL HAMEED

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. PHYSICS – VI SEMESTER – ELECTIVE COURSE - III

(For the candidates admitted from the year 2021-22 onwards)

NUMERICAL METHODS

COURSE OBJECTIVES:

To make the Students to

- 1. Curve fitting examines they relationship between one or more independent variables.
- 2. Transcendental equations contains trigonometric, logarithmic, exponential functions.
- 3. Numerical differentiation is an important technique for engineers.

Numeriacal integration compute numerical approximation to the integral of the function at isolated points.

Isolat	ed points.											
UNIT - I	CURVE FITTING											
	Principle of Least Squares - Method of Group Averages - Fitting a straight line linear											
	regression - fitting a Parabola - Fitting an exponential curve.											
UNIT - II	SOLUTION OF NUMERICAL ALGEBRAIC, TRANSCENDENTAL AND											
	DIFFERENTIALEQUATION											
	Bisection Method - Methods of successive Approximations - Regulafalsi Method -											
	Newton Raph son method - Euler's Method - modified Euler's Method - RungeKutta											
	Method fourth order.											
UNIT - III	SIMULTANEOUS LINEAR ALGEBRAIC EQUATION											
	Gauss Elimination Method - Gauss Jordon Method - Computation of Inverse of a Matrix											
	Using Gauss - Elimination Method - Method of Trian gularisation.											
UNIT - IV	NUMERICAL DIFFERENTIATION											
	Linear Interpolation: Newton Forward Interpolation Formula and Backward											
	Interpolation formula. Interpolation with unequal intervals: Lagrange's interpolation											
	Formula (No Derivation) Hermit's – Bessel's Interpolating Polynomials											
UNIT - V	NUMERICAL INTEGRATION											
	Trapezoidal - Simpson's 1/3 Rule And 3/8 Rule - Practical Applications - Weddle's											
	Rule - Gaussian Quadrature Formula.											

TEXT BOOKS:

- 1. Venkatraman, M.K. Numerical Methods in Science and Engineering, National Publishing, Company Chennai (1977).
- 2. Shastry, S.S. Introductory Methods of Numerical Methods Prentice Hall Ltd.
- 3. Jain, Iyenger, S.R.K. And Jain R.K. Numerical Methods For Scientific And Engineering Computation New Age Publishers.
- 4. V. Rajaraman, Numerical Methods By, Prentice Hall India Pvt Ltd (2003).

- 1. B.D. Gupta, Numerical Analysis Konark Pub .Ltd., Delhi (2001).
- 2. S.Arulmurugam, Numerical Methods New Gamma Publishing, Palamkottai. (2003)
- 3. A.Singaravelu, Numerical Methods Meenakshi Agency, Chennai (2004).
- 4. P.Kandasamy, K. Thilagavathy, Calculus Of Finite Difference & Numerical Analysis S.Chand& Company LTD., New Delhi-55. (2003).

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES:

By the end of this course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Understand the curve fitting by different methods.	K2
CO2	Acquire the knowledge of solving differential Equations using Numerical Methods.	К3
CO3	Study the method of solving the linear algebraic Equations.	K3
CO4	Explore various interpolating and Extrapolating Methods.	K2
CO5	Acquire knowledge of the Numerical Integration.	K5

K1=Remember, K2=Understand, K3=Apply, K4=Analyze, K5=Evaluate

Nature of Course		
Knowledge and skill	Employability oriented	
Skill oriented	Entrepreneurship oriented	

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	Score	
CO1	4	3	2	3	4	4	4	4	3	3	2	3.3	
CO2	4	4	3	4	3	4	3	4	3	4	3	3.5	
CO3	4	3	3	3	4	4	4	3	3	3	1	3.2	
CO4	3	4	1	4	3	4	3	4	3	3	3	3.2	
CO5	4	4	2	4	4	3	4	4	3	4	3	3.5	
	Mean overall score												

Result: The core for this course is 3.34 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

COURSE DESIGNER: R.VASANTHAKUMARI

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. (CHEMISTRY) – III SEMESTER - NON CORE ELECTIVE - I

(For the candidates admitted from the year 2021-22 onwards)

ENERGY PHYSICS - I

COURSE OBJECTIVES:

To make the Students to

- 1. To understand renewable and conventional energy system.
- 2. To catogorise various forms of non-conventional energy.
- 3. To understand the photo conversion energy.
- 4. To analyse the types of solar stills.
- 5. To understand the biomass energy and its applications.

UNIT - I CONVENTIONAL ENERGY SOURCES

Various forms of energy - Renewable and conventional energy system - Comparisons - Coal, oil and Natural Gas - Availability - Statistical details - Worlds reserve of commercial energy sources and their availability

UNIT - II NON- CONVENTIONAL ENERGY SOURCES

Renewable energy sources - Solar energy- Structure of the Sun - Nature of the radiation - Terrestrial radiation - Solar heaters - Domestic and commercial type - Crop driersDirect and indirect type - Space cooling— Solar cooker - Box type and Multi reflector type solar cooker

UNIT - III PHOTO CONVERSION:

Photovoltaic generation - Principle of Solar cell- Current Voltage characteristics - Types of solar cells - p-n Homo junction cell - p-n- Hetro junction cell - Gallium Arsenide solar cell - Indium Phosphide solar cell.

UNIT - IV WATER DESALINATION- SOLAR STILL:

Water desalination - Principle of solar distiller - Single slope basic solar still - Double slope solar still - Non symmetrical solar still - Symmetrical solar still - Performance of solar distillation - Solar pond - Merits and demerits of solar energy.

UNIT - V BIO MASS ENERGY:

Bio mass energy - Classification of bio mass energy - Photo synthesis - Bio mass conversion - Direct and indirect method - Gobar gas plants - Ethanol from wood - Merits and demerits

TEXT BOOKS:

- 1. G.D. RAI, Non-conventional energy sources Khanna publishers, 2008.
- 2. KARUPANNAN. K and SUGANTHI, Energy physics- PRIYA publication.

- 1. G.D. RAI "Solar energy utilization"- Ed V(1995).
- 2. S.P. SAKHATURE, "Solar energy"- TATA MCGRAW Till publication company, Ed.,11, 1997.
- C.G. Agerwal, Solar energy.

Chalk and talk Lectures; seminar; ICT based presentations; Video Lectures; Group Discussions; Interactive activities; Mini – project; MCQs

COURSE OUTCOMES:

By the end of this course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	To interpret renewable and conventional energy system	K2
CO2	Able to analyze various forms of non-conventional energy	K4
CO3	Ability to explain the photo conversion energy	K2
CO4	Able to classify the types of solar stills	K4
CO5	To illustrate the biomass energy and its applications	К3

K1=Remember, K2=Understand, K3=Apply, K4=Analyze, K5=Evaluate

Nature of Course			
Knowledge and skill	Employ	yability oriented	
Skill oriented	Entrep	reneurship oriented	

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	PSO7	PSO8	тот	Score
CO1	3	3	2	-	3	3	3	3	3	2	3	3	2	33	2.5
CO2	3	3	3	3	-	2	3	3	2	3	3	2	2	32	2.4
CO3	3	2	-	3	1	2	3	2	2	3	1	2	1	25	1.9
CO4	3	3	3	1	2	3	3	3	3	-	3	2	2	31	2.9
CO5	3	2	3	2	2	3	2	2	3	2	2	2	2	30	2.3
	Mean overall score														2.4

Result: The core for this course is 2.4 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. (CHEMISTRY) – IV SEMESTER - NON CORE ELECTIVE - II

(For the candidates admitted from the year 2021-22 onwards)

ENERGY PHYSICS - II

COURSE OBJECTIVES:

- 1. To explain the different types of wind energy.
- 2. To catagorise various other energy sources.
- 3. To understand the nuclear energy sources.
- 4. To illustrate the various energy storage devices.
- 5. To evaluate the impacts of non-conventional energy in various sectors.

UNIT - I WIND ENERGY Wind energy - Calculating the power from the wind – Horizontal - Axis wind mill -Single blade wind mill - bicycle wheel wind mill - Horizontal axis wind mill - Dutch type - sail type - Vertical Axis wind mill- Performance of wind mill- Merits and demerits UNIT - II **OTHER ENERGY SOURCES -I** Geothermal energy - Ocean Thermal Energy Conversion (OTEC) - open cycle - closed cycle - Tidal energy - Principle - Tidal power plants - Single basin system - One way cycle - Two way cycle - Merits and demerits. UNIT - III **OTHER ENERGY SOURCES -II** Nuclear power - Fusion and Fission - Breeder reactor nuclear fusion - Basic principles of magneto- Hydro - Dynamics - Solar production of Hydrogen - Liquid hydrogen as a Fuel in future - Merits and demerits. UNIT - IV **ENERGY STORAGE** Solar energy storage - Thermal, Electrical, Chemical, Mechanical - Hydrogen storage compressed Gas storage - Liquid storage - underground storage - Storage as metal hydrides IMPACTS OF NON- CONVENTIONAL ENERGY UNIT - V Conversions of energy - Patterns of energy consumption in domestic, Industrial, Transportation and Agricultural sectors - Conservation Principles - Energy crisis and possible solutions - Energy option for the developing countries - Impacts due to non -Conventional energy sources - Global warming.

TEXT BOOKS:

- 1. G.D. RAI, Non conventional energy sources Khanna publishers, 2008.
- 2. KARUPANNAN. K and SUGANTHI, Energy physics- PRIYA publication.

- 1. G.D. RAI "Solar energy utilization" Ed V (1995).
- 2. S.P. SAKHATURE, "Solar energy"- TATA MCGRAW Till publication company, Ed., 11, 1997.
- 3. C.G. Agerwal, Solar energy.

Lecture Method, ICT, Seminar, Assignment, Quiz, field visit

COURSE OUTCOMES:

By the end of this course, students will be able to

Course outcome No.	Course Outcome	Knowledge level
CO1	Understand the different types of wind energy.	K2
CO2	Able to categorize various other energy sources.	K4
CO3	Ability to explain the nuclear energy source.	K2
CO4	Able to classify the various energy storage devices.	K4
CO5	Can evaluate the impacts of non-conventional energy in various sectors.	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6= Create

Nature of Course	
Knowledge and skill	Employability oriented
Skill oriented	Entrepreneurship oriented

Mapping Course Outcome with PO and PSO

Outcome	PO1	PO2	PO ₃	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	PSO7	PSO8	TOT	Score
CO1	3	3	2	-	3	3	3	3	3	2	3	3	2	33	2.5
CO2	3	3	3	3	-	2	3	3	2	3	3	2	2	32	2.4
CO3	3	2	-	3	1	2	3	2	2	3	1	2	1	25	1.9
CO4	3	3	3	1	2	3	3	3	3	-	3	2	2	31	2.9
CO5	3	2	3	2	2	3	2	2	3	2	2	2	2	30	2.3
	Mean overall score										2.4				

Result: The core for this course is 2.4 (High relationship)

Note:

Strength level	Low	Medium	High
Value	1	2	3

Value Scaling

Mapping	1 - 33%	34 - 66%	67 - 100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1- 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score COs = -----
Total No. of POs & PSOs

Total No. of Cos

Total No. of Cos

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. - I SEMESTER - ALLIED COURSE – I (FOR CHEMISTRY, MATHEMATICS & GEOLOGY MAJOR)

(For the candidates admitted from the year 2021-22 onwards)

ALLIED PHYSICS – I

COURSE OBJECTIVES

To make the Students to

- 1. Explore the basic laws governing the behaviour of matter in everyday life.
- 2. Define the general parameters like force, velocity and acceleration.
- 3. Acquire fundamental knowledge of thermodynamical laws and magnetism.
- 4. Access the importance of ultrasonic and acoustic properties towards architectural developments

UNIT - I PROPERTIES OF MATTER

Elasticity: Hooks law - Elastic constants - Young's modulus by non-uniform bending - Rigidity modulus by torsion pendulum - Surface Tension: Explanation of molecular theory - Surface tension of the liquid by drop weight method - Viscosity: Poiseuille's formula - stream line motion - Turbulent motion - Critical velocity - Co-efficient of viscosity by Poiseuille's method.

UNIT- II | MECHANICS

Force - centripetal and centrifugal forces - Laws of friction - co-efficient of friction - Banking of curved tracks - Newton's law of gravitation - Kepler's laws of Planetary motion - Deduction of Newton's law of gravitation from Kepler's law - Centre of gravity - Centre of gravity of solid cone - Floatation laws - Stability of floating bodies.

UNIT- III | HEAT AND THERMODYNAMICS

Heat: Heat capacity - Entropy and Enthalpy - Thermal conductivity of a bad conductor by Lee's Disc method - Newton's law of cooling - Thermodynamic systems: Isothermal and adiabatic process - zeroth, first, second laws of thermodynamics - solar constant – temperature of the sun - Angstrom pyroheliometer.

UNIT- IV MAGNETISM AND ELECTROMAGNETISM

Magnetic materials - Properties of dia, para, ferro and anti-ferro magnetic materials - Permeability and susceptibility - Laws of electromagnetic Induction - Biot-Savart law - Force acting on a conductor carrying current in magnetic field - Moving coil galvanometer - Eddy currents - applications.

UNIT - V SOUND

Laws of stretched strings - determination of frequency of alternating current by Sonometer- Architectural acoustics: - characteristics of musical sound and noise - Reverberation time - Sabine's formula for reverberation time - Condition for good acoustics.

Ultrasonics: Production of ultrasonic waves by Piezo-electric oscillator - applications of ultrasonics.

TEXT BOOKS

- 1. R.Murugeshan, Allied Physics, S.Chand& Co. Ltd., New Delhi, 1st edition, 2006.
- 2. R. Murugeshan, KiruthigaSivaprasath, Properties of Matter and Acoustics, S.Chand& Co Ltd. 3rd Edition, Reprint 2013.
- 3. R.Murugeshan, Electricity and Magnetism, S.Chand& Co. Ltd, reprint 2017.

REFERENCE BOOKS

- 1. Robert F.Kingsbury, Elements of Physics, 1st edition, Van Nostrand Company Inc., London, 1966.
- 2. Nelkon and Parker, Advanced Level Physics, CBS Publishers & Distributors Pvt. Ltd.,7thedition, 2006.
- 3. BrijLal and N.Subrahmanyam, Properties of Matter, 3rd Edition, S.Chand& Co. Ltd.,2005.
- 4. BrijLal&N.Subrahmanyam, Heat Thermodynamics and Statistical Physics, S.Chand&Co. Ltd., 2012.

CHAIRMAN – BOS

Lecture by Board and Chalk, Problem Solving, Assignment and Seminars

Evaluation Pattern

Internal: Weightage to CIA test II (5) + Model Examn (10) + Attendance (5) +

Seminar (or) Assignment (5). Total 25 Marks

External: Part A (20) + Part B (25) + Part C (30) = Total **75 Marks**

COURSE OUTCOMES

By the end of this course, Students will be able to

Course Outcome No.	ome Course Outcome statement					
CO1	Demonstrate the practical concepts of bending of beams, surface tension and viscosity through experimental setup	K5				
CO2	Analyze the behaviour of fundamental concepts of mechanics	K4				
CO3	Apply the fundamental thermodynamic properties and the associated laws to understand physical systems	K4, K5				
CO4	Illustrate the effects of electric and magnetic field	K2				
CO5	Explore the production and application of ultrasonic waves and develop knowledge of architectural acoustics	K5				

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6= Create

Nature of Course		
Knowledge and Skill	Employability oriented	
Skill oriented	Entrepreneurship oriented	

MAPPING COURSE OUTCOME WITH PO AND POS

PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	POS7	POS8	TOT	
3	3	3	3	3	3	3	3	3	3	3	2	2	37	2.8
3	3	3	2	2	3	2	3	2	3	2	3	2	33	2.5
3	3	2	3	2	3	2	3	2	3	2	2	2	32	2.4
3	3	2	2	2	3	3	3	3	2	3	2	2	33	2.5
3	3	2	2	3	3	3	3	3	3	3	2	2	35	2.6
	ı								•	M	ean overa	all score		2.5
														6
	3 3 3	3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 2 3 3 2	3 3 3 3 3 3 2 3 3 3 3 2 3 3 2 3 3 2 2 2	3 3 3 3 3 3 3 2 2 3 3 2 3 2 3 3 2 3 2 3 3 2 2 2	3 3 3 3 3 3 3 3 2 2 3 3 3 2 3 2 3 3 3 2 2 2 3 3 3 2 2 2 3	3 3 3 3 3 3 3 3 3 2 2 3 2 3 3 2 3 2 3 2 3 3 2 2 3 2 3 3 2 2 2 3 3	3 3 3 3 3 3 3 3 3 3 2 2 3 2 3 3 3 2 3 2 3 2 3 3 3 2 2 2 3 2 3 3 3 2 2 2 3 3	3 3 3 3 3 3 3 3 3 3 3 2 2 3 2 3 2 3 3 2 3 2 3 2 3 2 3 3 2 2 3 2 3 2 3 3 2 2 2 3 3 3	3 3 3 3 3 3 3 3 3 3 3 2 2 3 2 3 2 3 3 3 2 3 2 3 2 3 2 3 3 3 2 2 2 3 3 2 3 3 3 2 2 2 3 3 3 2	3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 <td>3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 2 3 2 3 3 3 2 3 2 3 2 3 2 3 3 3 2 2 3 3 2 3 2 2 3 3 2 2 3 3 3 3 3 2 3 3 2 2 3 3 3 3 3 3 2</td> <td>3 3 3 3 3 3 3 3 3 2 2 3 3 3 2 2 3 2 3 2 3 2 3 3 2 3 2 3 2 3 2 3 2 3 3 2 2 2 3 2 3 2 2 2 3 3 2 2 2 3 3 3 2 3 2 2</td> <td>3 3 3 3 3 3 3 3 3 3 2 2 37 3 3 3 2 2 3 2 3 2 3 2 33 3 3 2 3 2 3 2 3 2 2 32 3 3 2 2 2 3 3 3 2 2 32 3 3 2 2 2 3 3 3 2 2 33 3 3 2 2 3 3 3 3 3 2 2 33 3 3 2 2 3 3 3 3 3 3 2 2 35</td>	3 3 3 3 3 3 3 3 2 3 3 3 3 2 3 2 3 2 3 3 3 2 3 2 3 2 3 2 3 3 3 2 2 3 3 2 3 2 2 3 3 2 2 3 3 3 3 3 2 3 3 2 2 3 3 3 3 3 3 2	3 3 3 3 3 3 3 3 3 2 2 3 3 3 2 2 3 2 3 2 3 2 3 3 2 3 2 3 2 3 2 3 2 3 3 2 2 2 3 2 3 2 2 2 3 3 2 2 2 3 3 3 2 3 2 2	3 3 3 3 3 3 3 3 3 3 2 2 37 3 3 3 2 2 3 2 3 2 3 2 33 3 3 2 3 2 3 2 3 2 2 32 3 3 2 2 2 3 3 3 2 2 32 3 3 2 2 2 3 3 3 2 2 33 3 3 2 2 3 3 3 3 3 2 2 33 3 3 2 2 3 3 3 3 3 3 2 2 35

Result: The core for this course is 2.56 (High relationship)

Note:

Strength level	Low	Medium	High
value	1	2	3

Values Scaling

Mapping	1 – 33%	34 – 66%	67 -100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1 – 3.0
Quality	Poor	Moderate	High

Total of Value

Mean Score of COs =-----
Total No. of Pos& PSOs

Total No. of COS

Total No. of COS

COURSE DESIGNER:

CHAIRMAN – BOS

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc.– II SEMESTER – FIRST ALLIED COURSE – II (FOR CHEMISTRY, MATHEMATICS & GEOLOGY MAJOR)

(For the candidates admitted from the year 2021-22 onwards)

ALLIED PHYSICS – II – LAB

COURSE OBJECTIVES

To make the Students to

- 1. Demonstrate basic experiments to study the properties of matter.
- 2. Illustrate the concept of sound and verify its theoretical values experimentally.
- 3. Demonstrate the behavior of light and heat; study its properties through practical experiments.
- 4. Apply the concepts of electricity to calibrate the voltmeter and ammeter.
- 5. Verify the truth tables using different logic functions.

List of Experiments (Any Fifteen)

PROPERTIES OF MATTER

- 1. Young's Modulus Non Uniform Bending Pin and Microscope.
- 2. Torsional Pendulum Rigidity Modulus.
- 3. Surface tension and Interfacial Surface tension Drop weight method.
- 4. Coefficient of Viscosity of liquid using graduated burette.

HEAT & SOUND

- 5. Specific heat capacity of liquid by cooling method.
- 6. Lee's Disc Thermal Conductivity of a bad conductor.
- 7. EMF of thermocouple Direct deflection method.
- 8. Sonometer Verification of transverse laws.
- 9. Sonometer Determination of AC frequency

LIGHT

- 10. Focal length of a concave lens.
- 11. Spectrometer Grating Normal incidence method.
- 12. Spectrometer refractive index of solid prism.
- 13. Newton's Rings Radius of curvature of a convex lens.

ELECTRICITY

- 14. Carey Foster's bridge specific resistance.
- 15. Meter bridge Determination of specific resistance.
- 16. Potentiometer Low range voltmeter calibration.
- 17. Potentiometer Calibration of ammeter.
- 18. Table galvanometer Figure of merit

ELECTRONICS

- 19. Characteristics of a junction diode.
- 20. Construction of full wave rectifiers.
- 21. Basic logic gates Verification of truth table using discrete Components

REFERENCE BOOKS

- 1. S.Balasubramanian, R.Ranganathan, M.N. Srinivasan, A Textbook of Practical Physics 2nd revised Edition, S. Chand and Sons Pvt, Ltd., 2017.
- 2. C.C.Ouseph, U.J.Rao, V.vijayendran, Practical Physics, 1st Edition, Viswanathan Sprinters and Publishers, Pvt, Ltd., 2015.
- 3. P.R.Sasikumar, Practical Physics PHI Learning Pvt, Ltd., 2011.
- 4. S.P.Singh&PragathiPrakasam, Advanced Practical Physics. 2019.

CHAIRMAN – BOS

Hands on learning – Practical sessions

COURSE OUTCOMES

By the end of this course, Students will be able to

Course	Course Outcome statement	Knowledge
Outcome		Level
No.		
CO 1	Apply the concept of elastic nature of materials and surface	K5
	Tension, Viscosity of liquid by various experimental set up	
CO 2	Demonstrate the principles of specific heat capacity and laws of	K4
CO 2	vibration through various experimental procedures.	N4
CO 3	Apply the phenomenon of interference and the concept of	K4
CO 3	refractive index with the use of suitable optical set up.	Κ4
	Develop the ability to design and connect simple electronic	
CO 4	circuits and to collect and analyse the data using these circuits. To	K5
CO 4	develop skills in using electronic instruments like volt meter and	KJ
	ammeter.	
CO 5	Analyze and design various digital electronic circuits.	K5

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6= Create

MAPPING COURSE OUTCOME WITH PO AND POS

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	POS7	POS8	TOT	
CO1	3	3	2	3	3	3	3	3	2	2	2	2	2	33	2.5
CO2	3	3	3	3	2	3	2	3	2	2	2	2	2	32	2.4
CO3	3	2	2	3	3	3	2	3	2	3	2	2	2	32	2.4
CO4	3	3	3	2	2	3	2	2	2	2	2	2	2	30	2.3
CO5	3	2	3	2	2	3	3	3	3	3	3	2	2	34	2.6
Mean overall score										2.44					

Result: The core for this course is 2.4 (High relationship)

Note:

Strength level	Low	Medium	High
value	1	2	3

Values Scaling

Mapping	1 – 33%	34 – 66%	67 -100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0
Quality	Poor	Moderate	High

COURSE DESIGNER:

CHAIRMAN – BOS

GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR – 639 005 B.Sc. – II SEMESTER – FIRST ALLIED COURSE – III (FOR CHEMISTRY, MATHEMATICS & GEOLOGY MAJOR)

(For the candidates admitted from the year 2021-22 onwards)

ALLIED PHYSICS - III

COURSE OBJECTIVES

To enable the students to

- 1. Acquaint with the optical properties of materials.
- 2. Analyze the behaviour of lasers, types and its applications.
- 3. Evaluate the properties of atoms and nuclear models on the basis of its structure.
- 4. Formulate basic knowledge of digital electronic circuits with practical applications.

.,	unitie busic knowledge of digital electronic circuits with practical applications.
UNIT- I	OPTICS
	Laws of Reflection and Refraction - Refractive index of prism using spectrometer - Interference - Newton's rings — Determination of wave length of sodium light - Diffraction (definition only) - Fiber optics : Numerical aperture, acceptance angle — Total internal reflection - Fiber optics communication system - applications - Temperature sensor.
UNIT-II	LASER PHYSICS
	Properties - Spontaneous and stimulated emission - Population inversion - Optical pumping - Condition for Laser action - Semiconductor laser - CO ₂ laser - Nd-YAG laser - Applications of laser - Holography - Construction and Reconstruction.
UNIT-III	ATOMIC AND NUCLEAR PHYSICS Atomic physics: Photo electric effect - Einstein photoelectric equation - Coupling schemes - LS & JJ couplings - Zeeman effect - Experiment - Stark effect (definition only) - Nuclear Physics: Nucleus - Nucleus size, charge - Particle detectors - Geiger Muller counter - Particle accelerators -Betatron.
UNIT-IV	SEMICONDUCTORS AND OPTOELECTRONICS Intrinsic and extrinsic semiconductor – forward and reverse bias - Volt - Ampere Characteristics of P-N junction Diode - Zener diode - Optoelectronic devices: Photovoltaic cell - Solar cell – Phototransistor - LED and LCD – Construction, working and applications.
UNIT-V	NUMBER SYSTEM AND DIGITAL ELECTRONICS
	Binary, Octal, Hexadecimal – Inter conversion - AND, OR, NAND, NOR, XOR, XNOR gates - DeMorgan's theorem - Laws of Boolean algebra - Operation Amplifiers : Ideal characteristics – Inverting - Non inverting op-amp - CMRR - Adder - Subtractor.

TEXT BOOKS

- 1. R.Murugeshan, Allied Physics, 1st edition, S. Chand & Co. Ltd., New Delhi, 2006.
- 2. M. N Avadhanulu, N.Subrahmanyam, BrijLal, Text Book of Optics, S.Chand& Co. Ltd., 2012.
 - G. Senthil Kumar, Engineering Physics I, VRB Publishers Pvt. Ltd., 2013.
- 3. R.Murugeshan, KiruthigaSivaprasath, Modern Physics, S.Chand& Co. Ltd., 2016.
- 4. V.Vijayendran, Introduction to Integrated Electronics, Viswanathan, S., Printers & Publishers Pvt. Ltd., 2009.

REFERENCE BOOKS

- 1. Nelkon and Parker, Principles of Physics, Heinemann International literature and text books, 7th revised edition, edition 2006.
- 2. Donald P Leach, Albert Paul Malvino, GoutamSaha, Digital Principles and Applications, 7th edition, Tata McGraw Hill Education Private Ltd., New Delhi, 2011.
- 3. Ancillary Physics, Kamalakannan and others, S. Viswanathan, 2000.
- 4. Engineering Physics, M. Arumugam, Anuradha Agencies, Publishers, 2010.
- 5. Allied Physics, G.Ravichandran, Padmapriya Publications, 2007.

CHAIRMAN - BOS

TEACHING METHODOLOGY:

Lecture by Board and Chalk , Problem Solving, Assignment and Seminars

COURSE OUTCOMES

By the end of this course, Students will be able to

Course	Course Outcome statement	Knowledge
Outcome		Level
No.		
CO1	Demonstrate how light interacts with matter via studying dispersion through prism and to apply in designing optical useful day to day lives	K5
CO2	Discuss the properties of lasers, types and its applications	K4
CO3	Explain the properties of atoms and nuclear models on the basis of its structure	K4, K5
CO4	Exploration of semiconductor physics and its applications in day to day lives	K5
CO5	Apply the knowledge of digital electronic and logic gates in designing of various applications	K3, K4

K1 = Remember, K2 = Understand, K3 = Apply, K4 = Analyze, K5 = Evaluate, K6= Create

Nature of Course		
Knowledge and Skill	Employability oriented	
Skill oriented	Entrepreneurship oriented	

MAPPING COURSE OUTCOME WITH PO AND POS

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	POS7	POS8	TOT	
CO1	3	3	3	3	3	3	3	3	2	3	3	2	2	36	2.7
CO2	3	2	3	2	2	3	3	3	3	2	2	2	2	32	2.4
CO3	3	3	2	3	2	3	2	3	3	2	3	2	2	33	2.5
CO4	3	2	2	2	2	3	3	3	3	2	3	2	2	32	2.4
CO5	3	3	2	2	3	3	3	3	3	2	2	2	2	33	2.5
	Mean overall score									2.5					

Result: The core for this course is 2.5 (High relationship)

Nata	,

Strength level	Low	Medium	High
value	1	2	3

Values Scaling

Mapping	1 – 33%	34 – 66%	67 -100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0
Quality	Poor	Moderate	High

Mean Score of COs = Total of Value

Total of Mean Score

Mean overall score for COs = Total No. of COS

Total No. of COS

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. - III SEMESTER – SECOND ALLIED COURSE – I (FOR COMPUTER SCIENCE MAJOR)

(For the candidates admitted from the year 2021-22 onwards)

APPLIED PHYSICS - I

COURSE EDUCATIONAL OBJECTIVES

- 1. To study the statics and dynamics of solid bodies and liquids
- 2. To understand their physical properties
- 3. To solve problems in statics and dynamics.

UNIT - I CURRENT ELECTRICITY

Ohm's Law – Verification of Ohm's Law –Kirchoff's law – Applications of Kirchoff's law – Wheatstone's bridge – Metre bridge – Carey Foster's Bridge – Potentionmeter – Measurement of Current and Resistance - Calibration of low range Voltmeter.

UNIT - II | ALTERNATING CURRENT

AC circuits with double components – measurement of current and voltage – power in an AC Circuit – Power Factor (derivation) – Wattless current – Choke – Series and parallel resonant circuits – Impedance – Q factor – Selectivity and Sharpness of resonance.

UNIT- III NUMBER SYSTEMS, CODES AND LOGIC GATES

Number Systems – Conversions – Binary, Addition, Subtraction, Multiplication, Division – 8421 Code – BCD Code – Excess 3 code – Gray code – Binary to Gray and Gray to Binary converstion – ASCII Code – Basic and Derivative Gates: AND, OR, NOT, NAND, NOR, EX-OR – NAND & NOR as Universal Gates.

UNIT- IV BOOLEAN ALGEBRA, ARITHMETIC AND COMBINATIONAL LOGIC CIRCUITS

Basic laws of Boolean algebra, De Morgan's theorem – Verification of Boolean expression using Boolean laws – Half adder – Full adder – Half Subtractor – Full subtractor (using basic gates) – Encoder – Decimal to BCD encoder – Decoder – BCD to decimal decoder.

UNIT - V SEMICONDUCTOR MEMORIES

Introduction – ROM using diodes and transistors – Rom in terms of digital circuits - Building memory of larger capacity - PROM - EPROM – EEPROM – ROM as a unit in microcomputers - RAM - Static RAM - Flip Flop as a RAM cell – Memory expansion – Memory Parameters.

BOOKS FOR STUDY:

- 1. Narayanamurthy and Nagarathinam, Electricity and Magnetism.
- 2. BrijLal and N .Subramaniam, Electricity and Magnetism RatanPrakashanMandir, New Delhi 1995.
- 3. Puri V.K., Digital Electronics circuits and systems, TATA Mcgraw hill publications, New Delhi, 2011.
- 4. Vijayendran V & Subramanian V, Introduction to Integrated Electronics, S Viswanath PVT LTD., Chennai 2012.

BOOKS FOR REFERENCE:

- 1. Murugeshan R, Electricity and Magnetism, S Chand & Company Ltd., 2015.
- 2. Gothaman W.H. Digital Electronics, Prentice Hall of India PVT., New Delhi, 1996.
- 3. Sanjay D Jain, Applied Physics, Universities Press, Hyderabad, Telengana.

CHAIRMAN – BOS

 $Chalk\ and\ talk\ Lectures;\ seminar;\ ICT\ based\ presentations;\ Video\ Lectures;\ Group\ Discussions;$ $Interactive\ activities;\ Mini-project;\ MCQs$

Evaluation Pattern

Internal: Weightage to CIA test II (5) + Model Examn (10) + Attendance (5) +

Seminar (or) Assignment (5). Total 25 Marks

External: Part A (20) + Part B (25) + Part C (30) = Total **75 Marks**

Nature of Course							
Knowledge and Skill		Employability oriented					
Skill oriented		Entrepreneurship oriented					

MAPPING COURSE OUTCOME WITH PO AND PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	TOT	SCORE
CO1	4	3	2	2	3	3	3	3	2	4	29	2.7
CO2	3	2	4	2	2	2	3	4	2	3	27	2.7
CO3	2	3	4	2	2	1	2	4	3	3	27	2.7
CO4	4	3	2	1	4	2	3	3	3	1	26	2.6
CO5	2	4	3	3	2	3	2	2	4	3	28	2.8
	Mean overall score								2.7			

Result: The Score for this course is 2.7 (High relationship)

Note:

Strength level	Low	Medium	High
value	1	2	3

Values Scaling

Mapping	1 - 33%	34 – 66%	67 -100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0
Quality	Poor	Moderate	High

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. - IV SEMESTER – SECOND ALLIED COURSE – II

(For candidates admitted from the year 2021-22 onwards)

(FOR COMPUTER SCIENCE MAJOR)

APPLIED PHYSICS – II – LAB

COURSE OBJECTIVES

- 1. To illustrate the students different electronic circuit and their application in practice
- 2. To impart knowledge on assessing performance of electronic circuit through monitoring of sensitive parameters
- 3. To evaluate the use of computer based analysis tools to review performance of semiconductor device circuit.

List of Experiments (Any Fifteen)

- 1. Series and Parallel resonance circuit.
- 2. FET Characteristics.
- 3. Transistor Characteristics CE Configuration.
- 4. Transistor Characteristics CB Configuration.
- 5. Bridge Rectifier and Zener controlled regulated power supply.
- 6. Field along the axis of a coil Determination of BH value.
- 7. Field along the axis of a coil M.
- 8. Potentiometer Measurement of specific resistance.
- 9. Potentiometer Ammeter Calibration.
- 10. Carey Foster's Bridge Specific resistance.
- 11. Calibration of a thermistor and determination of its Energy gap.
- 12. R-C Coupled amplifier.
- 13. Hartley Oscillator using transistor.
- 14. Astable multivibrator using IC.
- 15. Adder and subtractor using op amp.
- 16. Integrator and differentiator using op amp.
- 17. Half adder and Halfsubtractor using gates.
- 18. NAND and NOR as universal building blocks.
- 19. Flip Flop using IC gates.
- 20. Verification of De Morgan's theorem.

TEXT BOOKS

- 1.Practical Physics, AnchalSrinivasa and R.K. Shukka, New age International Publishers, 2018, second Edition.
- 2.A text book of Physics Practical Part I, Prof. C.C. Ouseph and Prof. V. Srinivasan, S.Visvanathan Publisher ,1990
- 3.A text book of Physics Practical Part II, Prof. C.C. Ouseph and Prof. V.Srinivasan, S.Visvanathan, Publisher ,1996

BOOKS FOR REFERENCE:

- 1. Practical Physics, S.L.Gupta and V.Kumar, PragatiPrakashan- Meerut,1999, 23rd Edition
- 2. A Text book of Practical Physics, H.S.Aller and H.Moore, Mac millan and Co. Limited, 1941
- 3. Practical Physics with viva –voce, S.P. Singh, PragatiPrakashan- Meerut,1999, 23rd Edition
- 4. Advanced level Practical Physics , M.Nelkon and J.M. Ogborn, Heinemann Educational Books Limited London , 1967

COURSE OUTCOME

At the end of the course, a student will be able to

- 1. **Identify** relevant information to supplement to the analog electronic circuit course.
- 2. **Set up** testing strategies and select proper instruments to evaluate performance characteristics of electronic circuits.
- 3. **Choose** testing and experimental procedures on different types of electronic circuit and analyze their operation different operating conditions.
- 4. **Evaluate** possible causes of discrepancy in practical experimental observations in comparison to theory.
- **5. Practice** different types of writing and instruments connections keeping in mind technical, Economical, safety issues.

MAPPING COURSE OUTCOME WITH PO AND POS

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	POS6	POS7	POS8	TOT	SCORE
CO1	3	3	2	3	2	3	2	3	3	-	3	3	2	32	2.4
CO2	3	2	3	3	3	2	1	3	2	3	3	-	3	31	2.3
CO3	3	3	2	3	2	3	3	2	3	2	-	3	2	31	2.3
CO4	3	2	3	3	-	3	2	3	3	3	2	3	3	33	2.5
CO5	3	3	2	3	3	2	3	1	2	3	3	3	3	34	2.6
		<u> </u>	<u> </u>	<u> </u>			<u> </u>			<u> </u>	Me	an overa	ll score	161	2.42

Result: The core for this course is 2.42 (High relationship)

Note:

Strength level	Low	Medium	High
value	1	2	3

Values Scaling

Mapping	1 – 33%	34 – 66%	67 -100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1 – 3.0
Quality	Poor	Moderate	High

Total of Value	Total of Mean Score
Mean Score of COs =	Mean overall score for COs =
Total No. of Pos& PSOs	Total No. of COS

GOVERNMENT ARTS COLLEGE(AUTONOMOUS), KARUR – 639 005 B.Sc. – IV SEMESTER – SECOND ALLIED COURSE – III

(For the candidates admitted from the year 2021-22 onwards)

(FOR COMPUTER SCIENCE MAJOR)

APPLIED PHYSICS - III

COURSE OBJECTIVES

UNIT - I	SEMICONDUCTOR PHYSICS
	Theory of energy bands in crystals - Distinction between conductors, insulators and
	semiconductors-Intrinsic and Extrinsic Semiconductor - Hall effect in
	semiconductor - Zener diode - Tunnel diode - Backward diode - Breakdown
	voltage – avalanche Breakdown.
UNIT - II	TRANSISTORS
	Transistor: NPN & PNP-Transistor - DC characteristics of CE and CB
	configuration - Hybrid parameters-Function of Transistor as an amplifier and
	oscillator – FET-N-channel FET – performance Characteristics – FET amplifier.
UNIT- III	LASER
	Principle of laser - Properties- Stimulated emission - Population Inversion -
	Pumping- Nd:YAG Laser - CO2 Laser- Semiconductor laser - CD ROM.
UNIT - IV	OPTO-ELECTRONIC DEVICES LED
	Radiation Transition - Emission Spectra - Methods of excitation - Visible LED -
	Materials for LED - LED Configuration and performance - Photo Diode - Photo
	Transistor – Electronic Watches - Seven Segment display – LED.
UNIT - V	OPERATIONAL AMPLIFIER
	The basic Operational Amplifier - Inverting and Non Inverting Operational

BOOKS FOR STUDY:

1. Jacob Millman, Micro Electronics McGraw Hill Publications, NewDelhi, 1985.

Comparator – Differentiator – AC Integrator.

2. Theraja, B.L., The fundamentals of Solid State Physics, Sultan Chand & Co., Delhi, 2002.

Amplifier - Differential Operational Amplifier - CMRR – Basic uses of Operational

Amplifier-Sign and Scale changer and phase shifter - Adder - Subtractor -

3. Mithal G.K. and Vanvasi, Pulse and Digital Electronics, Khanna Publications, NewDelhi, 2006.

BOOKS FOR REFERENCE:

- 1. Ramanan, Functional Electronics TMH-1994.
- 2. Milmann and Halkins, Electronic Devices and circuits, McGraw Hill 1967.
- 3. Sanjay D Jain, Engineering Physics, Universities, Preas, Hyderabad, Telengana 2012

CHAIRMAN – BOS

Lecture method; ICT, Seminar, Quiz, Group Discussion.

Evaluation Pattern

Internal: Weightage to CIA test II (5) + Model Exam (10) + Attendance (5) +

Seminar (or) Assignment (5). Total 25 Marks

External: Part A (20) + Part B (25) + Part C (30) = Total **75 Marks**

Nature of Course						
Knowledge and Skill		Employability oriented				
Skill oriented		Entrepreneurship oriented				

MAPPING COURSE OUTCOME WITH PO AND PSO

Outcome	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	TOT	
CO1	2	4	2	2	3	3	3	3	2	4	28	2.8
CO2	3	2	4	2	3	2	3	4	2	3	28	2.8
CO3	2	3	4	2	2	3	2	2	3	3	27	2.7
CO4	4	3	2	1	4	2	3	3	2	1	25	2.5
CO5	2	4	3	3	2	3	2	2	4	3	28	2.8
	Mean overall score									2.72		

Result: The Score for this course is 2.72 (High relationship)

Note:

Strength level	Low	Medium	High
value	1	2	3

Values Scaling

Mapping	1 – 33%	34 – 66%	67 -100%
Scale	1	2	3
Relation	0.0 - 1.0	1.1 - 2.0	2.1 - 3.0
Quality	Poor	Moderate	High

Total of Value	Total of Mean Score
Mean Score of COs =	Mean overall score for COs =
Total No.of Pos& PSOs	Total No. of COS